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Abstract

This is a note for ENGG2780 - Statistics for Engineers for self-revision purpose ONLY. Some
contents are taken from lecture notes and reference book.
Mistakes might be found. So please feel free to point out any mistakes.
Contents are adapted from the lecture notes of ENGG2780, prepared by Sinno Jialin Pan, as well as
some online resources.
This course heavily relies on prior knowledge of probability (which you can refer to in the notes I wrote for
ENGG2760). Therefore, before proceeding with this course, make sure you understand the foundation,
as I will take them for granted.

https://www.cse.cuhk.edu.hk/~sinnopan/
https://www.ryanc.wtf/files/ENGG2760.pdf
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Chapter 1

Bayesian Statistic

1.1 Statistic v.s. Probability

Statistics focuses on real-life applications where the underlying distribution is often unknown. To address
this, we use statistical inference to analyze observed data and estimate the unknown distribution.
Rather than finding the exact distribution, we approximate it using models such as parametric (e.g.,
normal, exponential) or non-parametric approaches. Once a suitable model is chosen, probability laws
help us make predictions and draw conclusions, though these approximations involve assumptions and
uncertainties.

Now, let’s move on to our first topic in statistics:

1.2 Bayesian Statistics

1.2.1 Introduction

In the probability course, we learned Bayes’ Rule ENGG2760: Theorem 3.2.1, which helps us calculate
conditional probabilities and, at times, update our beliefs based on new evidence.

And it turns out that one of the statistical inferences we use is based on Bayes’ rule, namely Bayesian
statistical inference. In Bayesian statistical inference, we: (1) assign prior probabilities to parameters;
(2) observe data; and (3) update probabilities via Bayes’ rule:

fΘ|X(θ|x)︸ ︷︷ ︸
Posterior

=

Prior︷ ︸︸ ︷
fΘ(θ)

Observation︷ ︸︸ ︷
fX|Θ(x|θ)
fX(x)

Here we have both the posterior and prior probabilities of the parameters θ and observations x.

We have four variations of the Bayes’ rule shown above.

Condition Bayes’ rule

Θ discrete, X discrete pΘ|X(θ|x) = pΘ(θ)pX|Θ(x|θ)∑
θ′ pΘ(θ′)pX|Θ(x|θ′)

Θ discrete, X continuous pΘ|X(θ|x) = pΘ(θ)fX|Θ(x|θ)∑
θ′ pΘ(θ′)fX|Θ(x|θ′)

Θ continuous, X discrete fΘ|X(θ|x) = fΘ(θ)pX|Θ(x|θ)∫
fΘ(θ′)pX|Θ(x|θ′)

Θ continuous, X continuous fΘ|X(θ|x) = fΘ(θ)fX|Θ(x|θ)∫
fΘ(θ′)fX|Θ(x|θ′)
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We can use Z(x) to denote the denominator for both discrete and continuous cases. It depends only on
the observed data x.

Example (Probability Review). We flip a coin. How likely is it to get 2 heads in 3 coin flips if the
probability of heads is p, where p could be 0.5, 0.7, and 1?

Also, use the Central Limit Theorem to estimate the probability of at least 200 heads in 300 coin
flips.

Solution:
P(H = 2) =

(
3

2

)
p2(1− p)

p = 0.5 : P(H = 2) =
(
3
2

)
× 0.52 × 0.5 = 0.375

p = 0.7 : P(H = 2) =
(
3
2

)
× 0.72 × 0.3 = 0.441

p = 1 : P(H = 2) =
(
3
2

)
× 12 × 0 = 0

For the probability of at least 200 heads in 300 coin-flips,

H ∼ Binomial(300, p), µ = 300p, σ =
√

300p(1− p)

p = 0.5 : µ = 150, σ = 8.66

P(H ≥ 200) = P(
H − 150

8.66
≥ 200− 150

8.66
)

= P(z ≥ 5.77)

≈ 0

p = 0.7 : µ = 210, σ = 7.94

P(H ≥ 200) = P(
H − 210

7.94
≥ 200− 210

7.94
)

= P(z ≥ −1.26)

= Φ(1.26)

= 0.896

Above shows that we have a lower probability for p = 0.5, which means p = 0.7 is a better assumption.
This is also quite intuitive, since with 200 heads in 300 coin flips, there is a certain probability that the
coin is biased.

Again, we flip a coin three times and get two heads. You are told that there are three types of coins
with different priors, but you don’t know which coin you are flipping. It is obvious that the first coin
flip will affect your belief (prior) about which coin you have. For example, if you see 100 heads out of
100 flips, you might strongly believe that both sides of the coin are heads. But to what extent does each
flip influence your belief? This brings us to the problem of statistics.

Example. A coin can be one of three types:

1. A fair coin θ = 1 with one head and one tail – 90%

2. A coin θ = 2 with both sides as heads – 5%

3. A coin θ = 3 with both sides as tails – 5%

Now, you flip a head without knowing which coin you have. How should you update your belief
(priors)?

Solution:

P(θ = 1|H1) =
P(H1|θ = 1)P(θ = 1)

Z(H1)
=

0.5× 0.9

Z(H1)
=

0.45

Z(H1)

P(θ = 2|H1) =
P(H1|θ = 2)P(θ = 2)

Z(H1)
=

1× 0.05

Z(H1)
=

0.05

Z(H1)

P(θ = 3|H1) = 0
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Then we have P(H1) = Z(H1) = 0.45 + 0.05 + 0 = 0.5

P(θ = 1|H1) =
0.45

Z(H1)
= 0.9 P(θ = 1|H1) =

0.05

Z(H1)
= 0.1 P(θ = 1|H1) = 0

From this, we can update our belief, which we can then use to further readjust our belief if the
second flip also results in a head.

P(θ = 1|H2H1) =
P(H2|θ = 1, H1)P(θ = 1|H1)

Z(H2, H1)
=

0.5× 0.9

Z(H2, H1)
=

0.45

Z(H2, H1)

P(θ = 2|H2H1) =
P(H2|θ = 2, H1)P(θ = 2|H1)

Z(H2, H1)
=

1× 0.1

Z(H2, H1)
=

0.1

Z(H2, H1)

P(θ = 3|H2H1) = 0

Then we have P(H2H1) = Z(H2H1) = 0.45 + 0.01 + 0 = 0.55

P(θ = 1|H2H1) =
0.45

Z(H2H1)
= 0.82 P(θ = 1|H2H1) =

0.1

Z(H2H1)
= 0.18 P(θ = 1|H2H1) = 0

1.2.2 Bayesian Statistical Inference

For Bayesian statistics, we have only one formula: Bayes’s rule:

fΘ|X(θ|x)︸ ︷︷ ︸
posterior

∝ fX|Θ(x|θ)︸ ︷︷ ︸
likelihood

fΘ(θ)︸ ︷︷ ︸
prior

We have some prior knowledge, and after observing something, we can use the prior (assumption) and
likelihood to update our belief, which gives us the posterior. This posterior can later serve as the prior for
another observation, allowing us to continuously update our belief throughout the observation process.

Example. Romeo is waiting for Juliet on their first date. He wants to estimate how long he will
have to wait for her. Given that Romeo has some prior dating experience, he already has some
prior knowledge about how late girls tend to be.

Girl A - X ∼ Uniform(0, 0.3);

Girl B - X ∼ Uniform(0, 0.8);

Girl C - X ∼ Uniform(0, 0.6),

where the uniform random variable shows the range of lateness. For example, for girl A, she will be
late between the dating time and the dating time plus 0.3 hours. Then, how could you use Bayesian
statistics to estimate the waiting time for Romeo’s new girlfriend?

Solution: Here we can set up the uniform random variable Uniform(0,Θ), where Θ depends on
the girls. Then what we need to find is the θ for Juliet. We can then have

fX|Θ(x|θ) =


1

θ
, if 0 ≤ x ≤ θ;

0, otherwise.

In Romeo’s model, θ is also a uniform random variable θ ∼ Uniform(0, 1), where X ∼ Uniform(0,Θ).
It means that Romeo has a prior belief that all the girls would be late for at most 1 hour, and the
likelihood of Juliet being late is described by X, which states that she could be θ hour late. Given
that on their first date, Juliet arrived 1

2 hours late, we have

fΘ|X(θ|1
2
) ∝ fΘ(θ)fX|Θ(

1

2
|θ) = 1

θ

Here we have the prior fΘ(θ) = 1 if 0 ≤ θ ≤ 1, and the likelihood fX|Θ(
1
2 |θ) = 1

θ if 1
2 ≤ θ ≤ 1.

Keep in mind that the prior comes from Romeo’s model, where he has never dated a girl who is
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late for more than 1 hour, and it may not be valid if θ > 1, which shows the limitation of Bayesian
statistics. Also, the observation (likelihood) shows the probability of Juliet arriving precisely at (or
within a very small interval around) time plus 0.5. Therefore, we have θ ≥ 1

2 . Otherwise, if θ < 1
2 ,

it is not possible for Juliet to arrive 1
2 hour late, since it is not included in Romeo’s belief.

For the integral to be equal to 1, we need to find the constant term. This can be found using
calculus: ∫ 1

1
2

1

θ
dθ = ln θ

∣∣∣1
1
2

= ln 2 =⇒ fΘ|X(θ|1
2
) =

1

θ ln 2

Here we have θ < 1
2 = 0 because from the data,

we know that θ ≥ 1
2 , which means the lateness

parameter is at least 1
2 , so it is not possible for

Juliet to arrive between the dating time and dat-
ing time plus 0.5. We also have θ > 1 = 0 because
from Romeo’s prior knowledge, he knows that a
girl would not be later than 1 hour. -0.25 0 0.25 0.5 0.75 1 1.25

0.5

1

1.5

2

2.5

On their second date, Juliet arrived 1
4 hours late. We then need to readjust the prior based on the

previous model to find the new posterior.

fΘ|X1,X2

(
θ
∣∣∣1
2
,
1

4

)
∝ fΘ|X1

(
θ
∣∣∣1
2

)
fX2|Θ,X1

(
1

4

∣∣∣θ, 1
2

)
Here, since X1 and X2 are independent, we can discard X1 in the calculation.

fΘ|X1,X2

(
θ
∣∣∣1
2
,
1

4

)
∝ fΘ|X1

(
θ
∣∣∣1
2

)
fX2|Θ

(
1

4

∣∣∣θ) =
1

θ ln 2
× 1

θ
=

1

θ2 ln (2)
∝ 1

θ2

The same as above, we have fX2|Θ(
1
4 |θ) = 1

θ for θ ≥ 1
4 since it is not possible for the lateness to be

less than 1
4 hours. Also, given the prior as calculated in the first part, we have fΘ|X1

(θ| 12 ) = 1
θ ln 2

if 1
2 ≤ θ ≤ 1.

For the integral to be equal to 1, we need to find the constant term. This can be found using
calculus: ∫ 1

1
2

1

θ2
dθ = 1 =⇒ fΘ|X1,X2

(
θ
∣∣∣1
2
,
1

4

)
=

1

θ2

-0.25 0 0.25 0.5 0.75 1 1.25

0.5

1

1.5

2

2.5

3

3.5

4

Remark (Bayes’ rule variant).

P(θ|x1, x2) =
P(x2|θ, x1)P(θ|x1)

P(x2|x1)
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Proof.

fΘ|X1,X2

(
θ
∣∣∣1
2
,
1

4

)
=

fΘ,X1,X2

(
θ,

1

2
,
1

4

)
fX1,X2

(
1

2
,
1

4

)

=

fX2|Θ,X1

(
1

4

∣∣∣θ, 1
2

)
fΘ,X1

(
θ,

1

2

)
fX1,X2

(
1

2
,
1

4

)

=

fX2|Θ,X1

(
1

4

∣∣∣θ, 1
2

)
fΘ|X1

(
θ
∣∣∣1
2

)
fX1

(
1

2

)
fX1,X2

(
1

2
,
1

4

)

=

fX2|Θ,X1

(
1

4

∣∣∣θ, 1
2

)
fΘ|X1

(
θ
∣∣∣1
2

)
fX2|X1

(
1

4

∣∣∣1
2

)
Thus,

fΘ|X1,X2

(
θ
∣∣∣1
2
,
1

4

)
∝ fX2|Θ,X1

(
1

4

∣∣∣θ, 1
2

)
fΘ|X1

(
θ
∣∣∣1
2

)
■

Now it’s a bit tedious since we need to perform calculations and adjust our prior each time we obtain new
data or observations. However, we also have Bayes’s rule for multiple random variables, which simplifies
the process.

fΘ|X1,··· ,Xn
(θ|x1, · · · , xn) =

fX1,··· ,Xn|Θ(x1, · · · , xn|θ)fΘ(θ)
Z(x1, · · · , xn)

∝ fX1,··· ,Xn|Θ(x1, · · · , xn|θ)fΘ(θ)
= fX1|Θ(x1|θ) · · · fXn|Θ(xn|θ)︸ ︷︷ ︸

product of likelihood

fΘ(θ)︸ ︷︷ ︸
prior

if X1, · · · , Xn are independent given Θ.

Example (Cont’d). Given that Juliet is late by 1
4 hours on their third date, how do we find the

posterior?

Solution:

fΘ|X1,X2,X3

(
θ
∣∣∣1
2
,
1

4
,
1

4

)
∝ fX1|Θ

(
1

2

∣∣∣θ) fX2|Θ

(
1

4

∣∣∣θ) fX3|Θ

(
1

4

∣∣∣θ) fΘ(θ) =
1

θ3

For fX1|Θ, fX2|Θ, fX3|Θ, they are all equal to 1
θ for θ ≥ 1

2 and θ ≥ 1
4 for the same reason shown

before. We also have fΘ(θ) = 1 if 0 ≤ θ ≤ 1. Taking the intersection, we obtain 1
θ3 for 1

2 ≤ θ ≤ 1.
For the integral to be equal to 1, we need to determine the constant term, which can be found using
calculus. ∫ 1

1
2

1

θ2
dθ =

3

2
=⇒ fΘ|X1,X2,X3

(
θ
∣∣∣1
2
,
1

4
,
1

4

)
=

2

3θ3
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Example (Biased Coin). A coin of unknown bias flips HTT. What is the bias?

Solution: Let X ∼ Bernoulli(Θ), where Θ = P(X = H). We have a prior Θ ∼ Uniform(0, 1). To
find the posterior (bias), we have:

fΘ|X1,X2,X3
(θ|H,H, T ) ∝ pX1|Θ(H|θ)pX2|Θ(T |θ)pX3|Θ(T |θ)fΘ(θ)

= θ(1− θ)(1− θ)× 1

= θ(1− θ)2

=⇒ fΘ|X1,X2,X3
(θ|H,H, T ) =

θ(1− θ)2∫ 1

0
θ(1− θ)2dθ

= 12θ(1− θ)2

To find the posterior, we often need to find the denominator Z(x), which requires some calculus techniques
and can sometimes be difficult to solve. However, there are some techniques that come in handy.

1.3 Conjugate Priors

Definition 1.3.1 (Conjugate Priors). The posterior distribution fΘ|X(θ|x) is in the same probability
distribution family as the prior distribution fΘ(θ), the prior and posterior are then called conjugate
distributions, and the prior is called a conjugate prior for the likelihood functionfX|Θ(x|θ).

There are four types of conjugate priors to consider.

1.3.1 Conjugate Prior for Bernoulli

Definition 1.3.2. Suppose X1, · · · , Xn form a random sample from Bernoulli distribution with
an unknown parameter θ (0 < θ < 1). If the prior distribution fΘ(θ) is the Beta distribution
Beta(α, β) (α, β > 0), then the posterior distribution fΘ|X(θ|x) given {Xi = xi}i = 1n is the Beta
distribution Beta(α+

∑n
i=1 xi, β + n−∑n

i=1 xi).

Here we introduce the Beta random variable. It has the PDF as follows:

fΘ(θ) =


1

B(α, β)
θα−1(1− θ)β−1 for 0 < θ < 1

0 otherwise
,

where
B(α, β) =

Γ(α)Γ(β)

Γ(α+ β)
, Γ(α) =

∫ ∞

0

xα−1e−xdx = (α− 1)! (for positive integerα)

or equivalently,

B(α, β) =
(α− 1)!(β − 1)!

(α+ β − 1)!
.

The reason why B(α, β) appears in the denominator of the PDF is that it serves as the normalization
constant, ensuring that the integral equals 1 so that it is a valid PDF.

The Beta random variable is widely used to model the prior distribution of a random variable which
range is [0, 1], where α and β are hyperparameter.

Recalling the coin flip example above, with the prior Θ and observation X remaining unchanged, we can
use the Beta distribution to perform the calculation. We have Θ ∼ Uniform(0, 1) = Beta(1, 1), and for
h = 1, t = 2, we have:

fΘ|X1,X2,X3
(θ|H,H, T ) =

1

Beta(h+ 1, t+ 1)
θ2−1(1− θ)3−1 = 12θ(1− θ)2

In general, for a coin of unknown bias flips n times and gets h heads and (n−h) tails (or t tails), we can
have prior of Θ ∼ Uniform(0, 1) = Beta(1, 1), and (θ|h heads, t tails) ∼ Beta(h+ 1, t+ 1).
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The above shows that we can perform estimation based on the number of experiments, which will result
in a different PDF. With more data in hand, the accuracy of the data is higher. However, they share a
common feature: the value at which the PDF or PMF reaches its maximum is

mode[θ] =
α− 1

α− 1 + β − 1
when α, β > 1

Also, we can treat the different parameters as a
change in belief. For example, if Beta(2, 3) is our
prior, and we readjust our belief based on observa-
tions, we then obtain Beta(21, 11). This shows that
the area below the original mode 1

3 decreases, mak-
ing it less probable.
The last thing to note is that hyperparameter, in
the coin flip case, h, t, don’t matter if we observe a
large number of data samples, meaning the poste-
rior mainly depends on the observed data. However,
if the prior contains a large dataset or the size of
the observed data is small, then the prior plays an
important role in the posterior.
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0
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·104

θ

Beta(21, 11)
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1.3.2 Conjugate Prior for Poisson

Definition 1.3.3. Suppose X1, · · · , Xn form a random sample from Poisson distribution with an un-
known mean Θ > 0. If the prior distribution fΘ(θ) is the Gamma distribution Gamma(α, β) (α, β >
0), then the posterior distribution fΘ|X(θ|x) given {Xi = xi}ni=1 is the Gamma distribution
Gamma(α+

∑n
i=1 xi, β + n).

Here we introduce another random variable that is often used as prior, Gamma random variable. It has
the PDF as follows:

fΘ(θ) =


βα

Γ(α)
θα−1e−βθ for θ > 0

0 for θ ≤ 0

,

where
Γ(α) =

∫ ∞

0

xα−1e−xdx = (α− 1)! (for positive integer α).

Again, we have the Gamma random variable as the denominator because the integral needs to be equal
to 1.

Example. At an Apple Store, the number of iPhones sold per day is modeled as a Poisson distribution
with unknown mean Θ. Suppose the prior distribution of Θ is Gamma(3, 2). Let X be the number
of iPhones sold in a specific day. If X = 3 is observed, what is the updated distribution of θ?

Solution: Here we have

X ∼ Poisson(Θ) =


e−θθx

x!
for x = 0, 1, 2 . . .

0 otherwise
;

Θ ∼ Gamma(α, β) =


βα

Γ(α)
θα−1e−βθ for θ > 0

0 for θ ≤ 0

.

Since we have observed X = 3,

fΘ|X(θ|3) ∝ fΘ(θ)fX|Θ(3|θ)

where

fΘ(θ) = Gamma(3, 2) =
23

2!
θ3−1e−2θ, fX|Θ(3|θ) = Poisson(θ) =

e−θθ3

3!
.

Then we have

fΘ|X(θ|3) ∝ fΘ(θ)fX|Θ(3|θ) =
22

3!
θ5e−3θ ∝ θ5e−3θ

fΘ|X(θ|3) = θ6−1e−3θ

Z
, Z =

∫ ∞

0

θ6−1e−3θdθ =
Γ(6)

36

Finally, we have the posterior
fΘ|X(θ|3) = Gamma(6, 3).

Above is the same as taking α = 3, β = 2, n = 1 and x = 3, then we have α + x = 6, β + n = 3. This
directly gives us Gamma(6, 3).

1.3.3 Conjugate Prior for Exponential

Definition 1.3.4. Suppose X1, · · · , Xn form a random sample from Exponential distribution with an
unknown parameter θ > 0. If the prior distribution fΘ(θ) is the Gamma distribution Gamma(α, β)
(α, β > 0), then the posterior distribution fΘ|X(θ|x) given {Xi = xi}ni=1 is the Gamma distribution
Gamma(α+ n, β +

∑n
i=1 xi).

In the case of Exponential prior, we have α = no. of trials + 1, β = sum of data + prior.

CHAPTER 1. BAYESIAN STATISTIC 9



Example. If the number of iPhones sold per hour follows a Poisson distribution with unknown
mean Θ, then the time between two successive iPhones sold follow an exponential distribution with
parameter Θ. Suppose the prior distribution of Θ is Gamma(1, 2). Let X be the time interval (in
hour) between successive iPhones sold.

Assume that we have X1 = 1.5, X2 = 2, X3 = 2.5.

Solution: Here we have

X ∼ Exponential(Θ) =

{
θe−θx for x ≥ 0

0 for x < 0
;

Θ ∼ Gamma(1, 2).

Since we have observed X1, X2, X3,

fΘ|X1,X2,X3
(θ|1.5, 2, 2.5) ∝ fΘ(θ)fX1,X2,X3|Θ(1.5, 2, 2.5|θ)

where

fΘ(θ) = Gamma(1, 2) =
21

1!
θ1−1e−2θ, fX1,X2,X3|Θ(1.5, 2, 2.5|θ) = (θe−1.5θ)(θe−2θ)(θe−2.5θ).

Then we have

fΘ|X1,X2,X3
(θ|1.5, 2, 2.5) ∝ fΘ(θ)fX1,X2,X3|Θ(1.5, 2, 2.5|θ) = 2θ3e−(2+6)θ ∝ θ3e−(2+6)θ

fΘ|X(θ|3) = θ3e−(2+6)θ

Z
, Z =

∫ ∞

0

θ3e−(2+6)θdθ =
Γ(4)

84

Finally, we have the posterior
fΘ|X(θ|3) = Gamma(4, 8).

Above is the same as taking α = 1, β = 2, n = 3, x1 = 1.5, x2 = 2 and x3 = 2.5, then we have
α + n = no. of trials + 1 = 3 + 1 = 4, β + n = sum of trials + prior = 6 + 2 = 8. This directly gives us
Gamma(4, 8).

1.3.4 Conjugate Prior for Normal Distribution

Definition 1.3.5. Suppose X1, · · · , Xn form a random sample from a normal distribution with an
unknown mean µ and a known variance σ2 > 0. If the prior distribution fΘ(µ) is the normal
distribution N (µ, σ2

0), then the posterior distribution fΘ|X(µ|x) given {Xi = xi}ni=1 is the normal
distribution N (µ′, σ′2), where

µ′ =
σ2µ0 + σ2

0

∑n
i=1 xi

σ2 + nσ2
0

σ′2 =
σ2σ2

o

σ2 + nσ2
o

Definition 1.3.6 (A more general case). Suppose X1, · · · , Xn form a random sample from a normal
distribution with a common unknown mean θ and the known variance σ2

i > 0. If the prior distri-
bution fΘ(θ) is the normal distribution N (µ0, σ

2
0), then the posterior distribution fΘ|X(θ|x) given

that {Xi = xi}ni=1 is the normal distribution N (µ, σ2), where

µ

σ2
=

µ0

σ2
0

+
x1

σ2
1

+ · · ·+ xn

σ2
n

1

σ2
=

1

σ2
0

+
1

σ2
1

+ · · ·+ 1

σ2
n

Here we need to consider a special case when both σ2
0 and σ2 are equal to 1, then we have

µ′ =
µ0 +

∑n
i=1 xi

1 + n
σ′2 =

1

1 + n
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Example. An N (Θ, 1) random variable takes value 3.97. Θ follows a standard normal. What is the
posterior of Θ?

Solution: Here we have the PDF of N (µ, σ2)

fX(x) =
1

σ
√
2π

e−
1
2

(x−µ)2

σ2

Given that the prior = Θ ∼ N (0, 1), posterior = fΘ|X(θ|x) ∝ fΘ(θ)fX|Θ(x|θ), we have

fΘ(θ) =
1√
2π

e−
1
2 θ

2

fX|Θ(x|θ) =
1√
2π

e−
1
2 (x−θ)2

fΘ|X(θ|x) ∝ fΘ(θ)fX|Θ(x|θ) =
1√
2π

e−
1
2 θ

2 × 1√
2π

e−
1
2 (x−θ)2

∝ e−
1
2 θ

2 × e−
1
2 (x−θ)2

= e−
1
2 θ

2− 1
2 (x−θ)2

= e
−(

√
2θ− 1√

2
x)2

e−
x2

4︸ ︷︷ ︸
constant term

∝ e
−(

√
2θ− 1√

2
x)2

= e
− 1

2

(θ− x
2
)2

( 1√
2
)2

Then we have
µ =

x

2
=

3.97

2
= 1.985 σ2 = (

1√
2
)2 =

1

2

Finally, we have the posterior

fΘ|X(θ|3) = N (1.985,
1

2
)

Above is the same as taking µ0 = 0, x1 = 3.97, σ0 = 1 and σ1 = 1, then we have

1

σ2
=

1

1
+

1

1
=⇒ σ =

1√
2

µ
1
2

=
0

1
+

3.97

1
=⇒ µ = 1.985,

which directly gives us N (1.985,
1

2
).

When σ0 = σ1 = · · · = 1, we can find σ and µ by:

σ =
1√
n+ 1

, µ =
x0 + x1 + · · ·+ xn

n+ 1

Example. Three independent N (Θ, 1) random variables take values 3.97, 4.09, 3.11. What is Θ?

Solution: Here we assume the priors are Θ ∼ N (0, 1), and from observation we have x1 = 3.97, x2 =
4.09, x3 = 3.11.

Then, for the posterior, we have

fΘ|X1,X2,X3
(θ|x1, x2, x3) ∼ N

(
0 + 3.97 + 4.09 + 3.11

1 + 3
,

(
1√
1 + 3

)2
)

≈ N (2.79,
1

4
)

1.4 Applications of Bayesian Statistic

In this section, we will study the use of Bayesian Statistics.

To begin with, think about the coin flips event. Assume that you have observed some data, i.e., the
first 10 coin flips give the sequence H T T H T T H T T T. You now have the model; then, what can it
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be used for? It turns out that we can use it to make predictions, which tell the probability of the next
flip being a head. We can also use it to do estimation, such as determining the probability of heads for
this coin. Additionally, we can perform something called hypothesis testing, which helps us find the best
guess for the estimation.

1.4.1 Prediction

Let’s revisit the previous dating scenario.

Example. On her first date, Juliet arrives 1
2 hour late. How likely is she to arrive more than 3

4 hour
late next time?

Solution: Let X1, X2 ∼ Uniform(0,Θ), where Θ = Uniform(0, 1). From the posterior that we
calculated before, we have

fΘ|X(θ|1
2
) =


1

θ ln 2
if

1

2
≤ θ ≤ 1

0 otherwise

We can then use this posterior to make predictions.

P(X2 ≥ 3

4
|X1 =

1

2
) =

∫ +∞

−∞
P
(
X2 ≥ 3

4
|X1 =

1

2
,Θ = θ

)
P
(
θ|X1 =

1

2

)
︸ ︷︷ ︸

Total Probability Theorems

dθ

(∗) =
∫ 1

1
2

P
(
X2 ≥ 3

4
|X1 =

1

2
,Θ = θ

)
fΘ|X(θ|1

2
)dθ

(∗∗) =
∫ 1

3
4

P
(
X2 ≥ 3

4
|Θ = θ

)
fΘ|X(θ|1

2
)dθ

(∗ ∗ ∗) =
∫ 1

3
4

(θ − 3

4
)
1

θ

1

θ ln 2
dθ

=

∫ 1

3
4

1

θ ln (2)
dθ −

∫ 1

3
4

3

4θ2 ln (2)
dθ

=
ln 4

3 − 1
4

ln 2
= 0.054

In (*), we change the lower boundary from −∞ to
1

2
and the upper boundary from +∞ to 1

because fΘ|X(θ|1
2
) would be 0 outside [

1

2
, 1]. Then, in (**), we again update the lower boundary

to
3

4
because for

1

2
≤ θ ≤ 3

4
, P(X2 ≥ 3

4
|Θ = θ) would be equal to 0. In (***), we can directly find

the left-hand side by (θ− 3

4
)
1

θ
because X2 ∼ Uniform(0, θ). The PDF can be directly computed by

finding the area.

Remark. One may start with ∫ +∞

−∞
P
(
X2 ≥ 3

4
,Θ = θ|X1 =

1

2

)
dθ

CHAPTER 1. BAYESIAN STATISTIC 12



where

P
(
X2 ≥ 3

4
,Θ = θ|X1 =

1

2

)
=

P
(
X2 ≥ 3

4
,Θ = θ,X1 =

1

2

)
P
(
X1 =

1

2

)

=

P
(
X2 ≥ 3

4
|X1 =

1

2
,Θ = θ

)
P
(
X1 =

1

2
,Θ = θ

)
P
(
X1 =

1

2

)
= P

(
X2 ≥ 3

4
|X1 =

1

2
,Θ = θ

)
P
(
θ|X1 =

1

2

)
If we have past data and a prior distribution, we can often make predictions.

Example. Assume that we have observed n heads in coin flips. What is the probability that the
next coin flip will also be a head?

Solution: For coin flips, we can use X ∼ Bernoulli(Θ), where Θ = P(X = H). So for the prior, we
have Θ ∼ Uniform(0, 1) = Beta(1, 1). Since the prior follows a beta distribution, the posterior also
follows a beta distribution. Therefore, the posterior is given by:

Θ|n Heads ∼ Beta(n+ 1, 1)

fΘ|X1,··· ,Xn
(θ|nH) =

(n+ 1)!

n!1!
θn = (n+ 1)θn

We then use this posterior to update our belief, making it the prior for predicting whether the next
coin flip will be heads.

P(H∗|nH) =

∫ 1

0

P(H∗|θ)fΘ|X1,··· ,Xn
(θ|nH)dΘ

=

∫ 1

0

θ(n+ 1)θndθ

=
n+ 1

n+ 2

For example, if we have previously flipped n = 100 heads, the probability of the next coin flip being
heads is 101

102 .

To summary, in Bayesian prediction, for observation X = x (past data), if X is continuous, to predict
x∗ ∈ [a, b]

P(x∗ ∈ [a, b]|X = x) =

∫ +∞

−∞
P(x∗ ∈ [a, b]|θ) fΘ|X(θ|x)︸ ︷︷ ︸

prior

dθ

where

P(x∗ ∈ [a, b]|θ) =
∫ b

a

fX|Θ(x
∗|θ)dx∗.

If X is discrete, then to predict x∗

P(x∗|X = x) =

∫ +∞

−∞
P(x∗|θ)fΘ|X(θ|x)dθ

1.4.2 Point Estimation

The question then arises: how do we turn the conditional PDF or PMF fΘ|X(θ|x) estimate into a single
number? Or, to put it simply, how do we find the θ that is the best estimate of the parameter from the
posterior? It turns out we have two methods, namely the Maximum a Posterior (MAP) estimator and
the Conditional Expectation (CE) estimator.
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For MAP, we find the most likely value:

θMAP = argmax
θ

fΘ|X(θ|x).

For CE, we find the average among all possible θ, and the expectation µ = E[Θ] will minimize the mean
square error E[(Θ− θ)2]:

E[Θ|X = x].

To illustrate, let’s return to the dating problem again.

Example. In Romeo’s model, on their first date, Juliet arrived 1
2 hour late. What would be his

estimate for the probability of Juliet being late?

Solution:

MAP (optimistic method)

Posterior fΘ|X(θ|1
2
) =

1

θ ln 2
when

1

2
≤ θ ≤ 1 =⇒ argmax

θ

1

θ ln 2
= argmax

θ

1

θ

which gives

θMAP =
1

2
refers to the graph

CE (conservative method)

E[Θ|X1 =
1

2
] =

∫ 1

1
2

θ
1

θ ln 2
dθ =

1

2 ln 2
≈ 0.72

Remark. Note that prediction refers to forecasting the future value, while estimation involves cal-
culating the likely value of a parameter based on samples.

Here we have two special cases:

1. Point estimation for a Beta random variable.

Given that the prior is Θ ∼ Beta(1, 1), and the posterior is Θ|h Heads, t Tails ∼ Beta(1+h, 1+ t), where
α = h+ 1, β = t+ 1, we have:

mode[Beta(α, β)] : θ =
α− 1

α− 1 + β − 1
when α, β > 1.

θMAP =
α− 1

α− 1 + β − 1
=

h

h+ t

CE =
α

α+ β

As the number of data points increases, the difference between MAP and CE will become smaller, and
we will obtain a closer value.

2. Point estimation for Normal random variable.

Given that the prior is Θ ∼ N (µ0, 1), and the posterior is Θ|X1, · · · , Xn ∼ N (µ0+x1+···+xn

n+1 , 1
n+1 ), we

have
mode[N (µ, σ2)] : θ = µ

θMAP =
µ0 + x1 + · · ·+ xn

n+ 1

CE = E[N (µ, σ2)] = x
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1.4.3 Hypothesis Testing

Suppose that in a hypothesis testing problem, Θ takes m values θ1, · · · , θm. Recall that in hypothesis
testing, we want to find the best guess for the decision or classification, i.e., checking how likely the
estimated parameter is to be the actual one given the observed data. Then, how do we choose the one
for which fΘ|X(θi|x) is the largest (best guess), so that we have the optimal hypothesis θ?

Example (Estimation).

Now, you receive an email. It could be spam or legitimate, with Θ = 1 indicating spam with a 20%
chance, and Θ = 0 indicating legit with an 80% chance. Suppose there are two patterns, X1 and
X2, which are independent given a specific email, to classify whether the email is spam or legit.

Θ P(X1 = 1|θ) P(X2 = 1|θ)
Θ = 0 legit 0.03 0.0001
Θ = 1 spam 0.1 0.01

Then, in a specific email x, observe that X1 = 1 and X2 = 0. Is it spam or legitimate?

Solution:

P(Θ = 1|X1 = 1, X2 = 0) ∝ P(X1 = 1, X2 = 0|Θ = 1)P(Θ = 1) = 0.1× 0.99× 0.2 ≈ 0.0198

P(Θ = 0|X1 = 1, X2 = 0) ∝ P(X1 = 1, X2 = 0|Θ = 0)P(Θ = 0) = 0.03× 0.9900× 0.8 ≈ 0.0240

Thus, MAP Θ = 0, shows that the email is legitimate.

Example (Hypothesis testing).

We have two coins, A and B. Coin A has a 2
3 probability of landing heads, and coin B has a 2

3
probability of landing tails. You flip a random coin and observe the sequence H H T. Which coin did
you flip? What is the probability that you are wrong based on MAP, given the outcome is H H T?

Solution:

Since we have equally likely prior P(Θ = A) = P(Θ = B) = 50%,

P(Θ = A|HHT ) ∝ P(HHT |Θ = A)P(Θ = A) =
2

3
× 2

3
× 1

3
× 1

2
=

2

27

P(Θ = B|HHT ) ∝ P(HHT |Θ = B)P(Θ = B) =
1

3
× 1

3
× 2

3
× 1

2
=

1

27

Thus, MAP Θ = A.
error = P(B|HHT )

=
P(HHT |Θ = B)P(Θ = B)

P(HHT )

=
1
27

1
27 + 2

27

=
1

3

This shows that the event would be wrong at 1
3 of the time.

We find the probability that, even if the calculation is correct, it is still possible for us to make a wrong
guess from time to time. But then, what is the probability of being wrong on average?
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Example. What is the probability that you are wrong on average based on the MAP estimate given
the outcome of 3 flips?

Solution:

P(θMAP ̸= θ) = P(θMAP = B, θ = A) + P(θMAP = A, θ = B)

= P(θMAP = B|θ = A)P(θ = A) + P(θMAP = A|θ = B)P(θ = B)

We can find the probability of the outcome given the coin type, which we used to find θMAP.

For example,

p3H|θ=A =

(
3

3

)
(
2

3
)3(1− 2

3
)0 =

8

27
; p2H1T|θ=A =

(
3

2

)
(
2

3
)2(1− 2

3
)1 =

12

27

Then we have

Outcome 3H 2H1T 1H2T 3T

θMAP A A B B

poutcome|θ=A
8

27

12

27

6

27

1

27

poutcome|θ=B
1

27

6

27

12

27

8

27

Now we can find the probability of being wrong on average.

P(θMAP ̸= θ) = P(θMAP = B|θ = A)P(θ = A) + P(θMAP = A|θ = B)P(θ = B)

= (P(1H2T|θ = A) + P(3T|θ = A))P(θ = A)

+ (P(2H1T|θ = B) + P(3H|θ = B))P(θ = B)

=

(
6

27
+

1

27

)
× 1

2
+

(
6

27
+

1

27

)
× 1

2

=
7

27

For binary hypothesis testing error, we have θ = 0 (negative) or θ = 1 (positive), which represent the
true state. Similarly, we have θ̂ = 0 (negative) or θ̂ = 1 (positive), which represent the estimated state.
Then, P(θ̂ = 1, θ = 0) represents a false positive, and P(θ̂ = 0, θ = 1) represents a false negative. For the
calculation, we can then simply use

P(θ̂ ̸= θ) = P(θ̂ = 1, θ = 0) + P(θ̂ = 0, θ = 1)

= P(θ̂ = 1|θ = 0)P(θ = 0) + P(θ̂ = 0|θ = 1)P(θ = 1)

Example. A car-jack detector X outputs N (0, 1) if there is no intruder and N (1, 1) if there is one.
When should the alarm activate? What is the error?

Solution:

Prior: P(θ = 1) = p = 10% (assume p = 10%, and θ = 0 for no intruder case).

Then for posterior, we have

fΘ|X(0|x∗) ∝ PΘ(0)fX|Θ(x
∗|0) ∝ (1− p)e−

x∗2

2

fΘ|X(1|x∗) ∝ PΘ(1)fX|Θ(x
∗|1) ∝ pe−

(x∗−1)2

2

fΘ|X(1|x∗)

fΘ|X(0|x∗)
=

pe−
(x∗−1)2

2

(1− p)e−
x∗2

2

=
p

1− p
ex

∗− 1
2
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If the value is greater than 1, there will be an intruder. Otherwise, there will be no intruder. To
check if the value is greater than 1, we can use a logarithmic trick.

p

1− p
ex

∗− 1
2 > 1 ⇐⇒ x∗ >

1

2
+ ln

1− p

p
≈ 2.7

Therefore, when the signal strength is greater than 2.7, the alarm will be triggered.

error = P(θ̂ ̸= 0)

= P(θ = 0, x > 2.7) + P(θ = 1, x ≤ 2.7)

= P(x > 2.7|θ = 0)P(θ = 0) + P(x ≤ 2.7|θ = 1)P(θ = 1)

= P(N (0, 1) > 2.7)P(θ = 0) + P(N (1, 1) ≤ 2.7)P(θ = 1)

≈ 9.86%
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Chapter 2

Sampling statistics

Starting from this chapter, we will transition from Bayesian statistics to classical statistics. In Bayesian
statistics, parameters are treated as random variables with prior distributions, rather than fixed but
unknown values. In classical statistics, however, parameters are treated as deterministic (fixed) quantities
that are simply unknown. Therefore, we use sampling distributions to estimate parameters.

2.1 Sample Statistics

A random sample of size n is a joint outcome of n independent random variables X1, · · · , Xn, each with
the same PDF or PMF.

Remark. By saying same PDF or PMF, we mean that

E[X1] = · · · = E[Xn] = µ; Var[X1] = · · · = Var[Xn] = σ2

The process of generating a specific random sample is called sampling. Note that repetition is allowed
when taking samples.

2.1.1 Sampling Distributions

Given a random sample of n independent random variables X1, · · · , Xn with the same PDF or PMF,
the numerical descriptive measures of the sample are called statistics.

Sample mean: X =
X1 + · · ·+Xn

n
;

Sample proportion: p̂ =
X1 + · · ·+Xn

n
, where Xi are Bernoulli random variables;

Sample sum: X = X1 + · · ·+Xn;

Sample variance: s2 =

∑n
i=1(Xi −X)2

n
.

Here, all the sample statistics are random variables, which are assumed to occur with repetitions. The
probability distributions for statistics are called sampling distributions.

2.1.2 Sample Mean

Example. Consider a fair coin X (X = 1 for heads, X = 0 for tails). Flip the coin twice, and we
obtain X1, X2. Then, what is the PMF of X?

Solution: For the joint PMF of X1, X2, we have

18



Joint PMF X1 = 0 X1 = 1

X2 = 0
1

4

1

4

X2 = 1
1

4

1

4

Then we have

x 0 1 2

P(X1 +X2 = x)
1

4

1

2

1

4

x 0
1

2
1

P(X =
X1 +X2

2
= x)

1

4

1

2

1

4

Thus, when we flip the coin n times, we have

nX ∼ Binomial(n,
1

2
),

where X is always a random variable.

In this example, we assume that X ∼ Bernoulli(p) with p = P(X = 1) = 1
2 . However, in statistics,

we do not know p. So how can we describe the distribution? In statistics, we can derive the sampling
distribution of sample mean using the laws of probability.

Consider a class that has just finished an exam, and the grades have been released. Since you are a
student, you are not supposed to know all the grades or data. So, how can you find out the average exam
grade? The most naive approach is to ask your classmates for their grades. For example, you ask three
of them, and their grades are 39, 30, and 43, respectively. Then, you can calculate a sample average,
which is simply

x =
39 + 30 + 43

3
≈ 37.33.

However, you cannot ensure that this is 100% accurate, as you might randomly ask three classmates who
all happen to have low grades, such as 6, 7, and 5, resulting in a sample average of x = 6. So how do we
measure accuracy? Again, we use the laws of probability to do so.

The sample mean X =
X1 + · · ·+Xn

n
is an estimator of the actual mean:

µ = E[X1] = · · · = E[Xn],

where Xi is a random variable. Also, from the Weak Law of Large Number, we have

P(|X − µ| ≥ ϵ) ≤ δ,

The law of probability states that the probability of the sample mean being lower than the actual mean
is small and is upper bounded by δ. This leads to an important property of the sample mean: it is
consistent. In other words, for every positive ϵ and δ, there exists a sufficiently large sample size n such
that the probability that X differs from the actual mean by more than ϵ is less than δ.

There is another important property of the sample mean: it is an unbiased estimator. This means that
for every n, E[X] = µ. This is an intuitive concept. Since each Xi is a random variable sampled from
the population, the expected value of the sample mean is simply the mean of the actual population.

Proof.

E[X] = E
[
X1 + · · ·+Xn

n

]
=

1

n
E[X1 + · · ·+Xn] =

1

n
(E[X1] + · · ·+ E[Xn]) =

1

n
× nµ = µ

■

Then, based on the Central Limit Theorem, we can find the sampling distribution of the sample mean.
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Since we have

E[X] = µ; Var[X] = Var

[∑n
i=1 Xi

n

]
=

1

n2
Var

[
n∑

i=1

Xi

]
=

1

n2

n∑
i=1

Var[Xi] =
σ2

n
,

for every t,

lim
n→∞

P

(
X

n
≤ E[X]

n
+

t
√
Var[X]

n

)
= Φ(t);

lim
n→∞

P
(
X ≤ µ+ t

σ√
n

)
= Φ(t),

where
X − µ

σ√
n

= Z ∼ N (0, 1); X ∼ N
(
µ,

(
σ√
n

)2
)
.

Note that X follows a normal distribution for sufficiently large n. This leads to the question of how to
choose the ideal n.

Example. In a population of 1000, 200 people have disease X. For a sample of size 16, what is the
probability that the sample mean is in the range of 10% to 30%? Also, consider that 100 people
have disease Y out of 1000. For the same sample size, what is P(0.05 ≤ Y ≤ 0.15)?

Solution:

Disease X: From data we have

Xi ∼ Bernoulli
(
p =

200

1000
= 0.2

)
, Xi = 1 : having disease X

X =
X1 + · · ·+X16

16
=⇒ 16X ∼ Binomial(16, 0.2)

P(0.1 ≤ X ≤ 0.3) = P(1.6 ≤ 16X ≤ 4.8) = P(2 ≤ Binomial(16, 0.2) ≤ 4) ≈ 0.657

By using Central Limit Theorem,

Xi ∼ Bernoulli(0.2), µ(X) = µXi
= p = 0.2, σ(X) =

σXi√
n

=

√
p(1− p)√

n
=

√
0.2× 0.8√

16
= 0.1

P(0.1 ≤ X ≤ 0.3) ≈ P
(
0.1− 0.2

0.1
≤ X − µX

σX

≤ 0.3− 0.2

0.1

)
= P(−1 ≤ Z ≤ 1) = 0.683

Here the difference is within 2.6%.

Disease Y:

Yi ∼ Bernoulli
(
p =

100

1000
= 0.1

)
, Yi = 1 : having disease Y, 16Y ∼ Binomial(16, 0.1)

P(0.05 ≤ Y ≤ 0.15) = P(0.8 ≤ 16Y ≤ 2.4) = P(1 ≤ Binomial(16, 0.2) ≤ 2) ≈ 0.604

By using Central Limit Theorem,

Yi ∼ Bernoulli(0.1), µ(Y ) = 0.1, σ(Y ) =
σYi√
n
=

√
0.1× 0.9√

16
= 0.075

P(0.05 ≤ Y ≤ 0.15) ≈ P
(
0.05− 0.1

0.075
≤ Y − µY

σY

≤ 0.15− 0.1

0.075

)
= P(−0.666 ≤ Z ≤ 0.666) = 0.495

Here the difference is within 11%.

Therefore, if the population data is normal, then the sampling distribution of X is also normal, regardless
of the sample size. For n ≥ 30, the Central Limit Theorem (CLT) usually applies. However, it depends
on the data and the desired precision.
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Remark. Again, note that in statistics, we normally don’t have the actual data. We are more likely
asked to find a function or model to describe the distribution. The data being used are just for
demonstration purposes.

2.1.3 Sample Variance

Above, we talked about the unbiased estimator, the sample mean. However, in terms of sample variance,
it is a biased estimator due to the biased expectation.

Consider again the exam grade example that was used for illustration earlier. We have a sample mean
x = 37.33, and then we can find the sample variance.

s2 =
(39− 37.33)2 + (30− 37.33)2 + (43− 37.33)2

3
≈ 29.56.

However, as mentioned above, once the sample we take is different, it leads to a different sample variance.
In the case of sample variance, the average sample variance, or the expected value of the sample variance,
is often smaller than the actual population variance.

For example, we now have data on some X ∼ Bernoulli(p), p = 1
2 . To find σ2, we can start with the

variance for a Bernoulli random variable, in which Var[X] = p(1− p). Then, we have the actual variance
σ2 = 1

4 . When we take two samples, we find that the PMF of s2 = 1
2 ((X1 −X)2 + (X2 −X)2).

Joint PMF X1 = 0 X1 = 1

X2 = 0
1

4

1

4

X2 = 1
1

4

1

4

If X1 = X2, then X = X1 = X2, s
2 = 0; If X1 ̸= X2, then X = 1

2 , s
2 = 1

4 . This gives

s2 0 1
4

P(S2 = s2)
1

2

1

2

Then we have
E[S2] = 0× 1

2
+

1

4
× 1

2
=

1

8
=

1

2
σ2,

which is smaller than the actual variance.

In the general case, a random sample of size n consists of independent random variables X1, · · · , Xn

with the same PDF or PMF.
E[S2] =

n− 1

n
σ2,

which shows that we tend to underestimate. However, for a sufficiently large n → ∞, n−1
n → 1.

We can correct the sample variance using the formula above by using n−1
n , such that

E[
n

n− 1
S2] = σ2

(
n

n− 1
S2 =

n

n− 1

∑n
i=1(Xi −X)2

n
=

∑n
i=1(Xi −X)2

n− 1

)
Note that the factor is not significant when n is large, but it is important when n is small.
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Proof.
s2 =

1

n

(
(X1 −X)2 + · · ·+ (Xn −X)2

)
=

1

n

((
X1 −

X1 + · · ·+Xn

n

)2

+ · · ·+
(
Xn − X1 + · · ·+Xn

n

)2
)

=
1

n

(
n∑

i=1

X2
i +

n(
∑n

i=1 Xi)
2

n2
− 2

(
n∑

i=1

Xi

) ∑n
i=1 Xi

n

)

=

∑n
i=1 X

2
i

n
−
(∑n

i=1 Xi

n

)2

=

∑n
i=1 X

2
i

n
−X

2

E[s2] = E
[∑n

i=1 X
2
i

n
−X

2
]
=

∑n
i=1 E[X2

i ]

n
− E[X2

]

Var[Xi] = E[X2
i ]− E[Xi]

2; E[X2
i ] = σ2 + µ2

Var[X] = E[X2
]− E[X]2; E[X2

] =
σ2

n
+ µ2

By substitution, we have

E[s2] =
∑n

i=1 E[X2
i ]

n
− E[X2

] = σ2 + µ2 − σ2

n
− µ2 =

n− 1

n
σ2

■

2.2 Point Estimation
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Appendix A

Z TABLE

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
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