
CSCI2100 Data Structures

Ryan Chan

March 10, 2025

Abstract

This is a note for CSCI2100 Data Structures for self-revision purpose ONLY. Some contents are
taken from lecture notes and reference book.
Mistakes might be found. So please feel free to point out any mistakes.
Contents are adapted from the lecture notes of CENG3420, prepared by Irwin King, as well as some
online resources.

https://www.cse.cuhk.edu.hk/irwin.king/

Contents

1 Introduction 2
1.1 Overview . 2
1.2 Algorithm . 2
1.3 Study of Data . 3

2 Analysis 4
2.1 Complexity . 4
2.2 Recurrence Relations . 5

3 ADT, List, Stack and Queue 6
3.1 Abstract Data Type (ADT) . 6
3.2 List . 6
3.3 Stack . 8
3.4 Queue . 9

1

Chapter 1

Introduction

1.1 Overview

A data structure is a way to organize and store data in a computer program, allowing for efficient
access and manipulation.

An algorithm is different from a program. An algorithm is a process or set of rules used for calculation
or problem-solving. It is a step-by-step outline or flowchart showing how to solve a problem. A program,
on the other hand, is a series of coded instructions that control the operation of a computer or other
machines. It is the implemented code of an algorithm.

For example, to solve the greatest common divisor (GCD) problem, we can use the following algorithm.

Algorithm 1.1: Euclid’s Algorithm
Data: m,n ∈ Z+

Result: GCD(m,n)

1 while m > 0 do
2 if n > m then
3 swap m and n

4 subtract n from m

5 return n

By using a mathematical method to prove this algorithm, we can show that it is correct, provided that
it terminates.

Having proved the correctness, we also need to use different test cases to check if there is anything wrong
with the coding or the proof. We should consider special cases, including large values, swapped values,
etc.

We are also interested in the time and space (computer memory) it uses, which we call time complexity
and space complexity. Typically, complexity is a function of the values of the inputs, and we would
like to know which function. We can also consider the best case, average case, and worst-case scenarios.

For example, in the above algorithm, the best case would be m = n, with just one iteration. If n = 1,
there are m iterations, which is the worst case. However, for the average case, it is difficult to analyze.

Also, for space complexity, it is constant since we only use space for the three integers: m, n, and t.

To improve the above algorithm, we can use mod, so we don’t need to keep doing subtraction.

1.2 Algorithm

An algorithm is a finite set of instructions which, if followed, accomplishes a particular task. Every
algorithm must satisfy the following criteria:

2

- Input: There are zero or more quantities that are externally supplied.

- Output: At least one quantity is produced.

- Definiteness: Each instruction must be clear and unambiguous.

- Finiteness: If we trace out the instructions of an algorithm, then for all cases, the algorithm will
terminate after a finite number of steps.

- Effectiveness: Every instruction must be sufficiently basic that it can, in principle, be carried out by a
person using only pencil and paper.

We also define an algorithm as any well-defined computational procedure that takes some value, or
set of values, as input and produces some value, or set of values, as output. It is thus a sequence of
computational steps that transform the input into output.

It can also be viewed as a tool for solving a well-specified computational problem. The problem statement
specifies, in general terms, the desired input or output relationship, and the algorithm describes a specific
computational procedure for achieving that input or output relationship.

An algorithm is said to be correct if, for every input instance, it halts with the correct output. It can
solve the given computational problem. In contrast, an incorrect algorithm might not halt at all on some
input instances, and sometimes it can even produce useful results.

1.3 Study of Data

A data structure is a particular way of storing and organizing data in a computer so that it can be used
efficiently.

A data structure is a set of domains D, a designated domain d ∈ D, a set of functions F , and a set of
axioms A.

An implementation of a data structure d is a mapping from d to a set of other data structures e.

CHAPTER 1. INTRODUCTION 3

Chapter 2

Analysis

2.1 Complexity

Before, we talked about the definition of an algorithm. In this part, we would like to know how we can
estimate the time required for a program, how to reduce the running time of a program, what the storage
complexity is, and how to deal with trade-offs.

We can analyze the runtime by comparing functions. For example, given two functions f(N) and
g(N), we can compare their relative rates of growth. There are three types of comparisons that we can
make: f(n) = Θ(g(n)) represents the exact bound, f(n) = O(g(n)) represents the upper bound, and
f(n) = Ω(g(n)) represents the lower bound.

By using bounds, we can establish a relative order among functions. Here, we often use O(n) to analyze
time complexity.

For the definition of the upper bound, it says that there is some point n0 past which cf(N) is always at
least as large as T (N). Then we say that T (N) = O(f(N)), where f(N) is the upper bound on T (N).

Definition 2.1.1. We say that f(n) = O(g(n)) iff there exists a constant c > 0 and an n0 ≥ 0 such
that

f(n) ≤ cg(n) for all n ≥ n0

Or we can use the following notation

∃c > 0, n0 ≥ 0 such that f(n) ≤ cg(n)∀n ≥ n0

There are some rules to follow:

• Transitivity
If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n))

• Rule of sums
f(n) + g(n) = O(max{f(n), g(n)})

• Rule of products

If f1(n) = O(g1(n)), f2(n) = O(g2(n)), then f1(n)f2(n) = O(g1(n)g2(n))

We do not include constants or lower-order terms inside Big-O notation.

If f(n) is a polynomial in n with degree r, then f(n) = O(nr), but for s < r, f(n) ̸= O(ns).

Also, any logarithm of n grows more slowly than any positive power of n as it increases. Hence, log n is
O(nk) for any k > 0, but nk is never O(log n) for any k > 0.

4

Order Time

O(1) constant time
O(n) linear time
O(n2) quadratic time
O(n3) cubic time
O(2n) exponential time

O(log n) logarithmic time
O(log2 n) log-squared time

On a list of length n, sequential search has a running time of O(n).

On an ordered list of length n, binary search has a running time of O(log n).

The sum of the sums of integer indices of a loop from 1 to n is O(n2).

In summary, Big-O notation provides an upper bound of the complexity in the worst-case, helping to
quantify performance as the input size becomes arbitrarily large. However, it doesn’t measure the actual
time, but represents the number of operations an algorithm will execute.

2.2 Recurrence Relations

Recurrence relations are useful in certain counting problems, for example, recursive algorithms. They
relate the n-th element of a sequence to its predecessors.

By definition, a recurrence relation for the sequence a0, a1, · · · is an equation that relates an to certain
of its predecessors a0, a1, · · · , an−1. Initial conditions for the sequence are explicitly given values for a
finite number of the terms of the sequence.

To solve a recurrence relation, we can use iteration. We use the recurrence relation to write the n-th term
an in terms of certain of its predecessors. We then successively use the recurrence relation to replace
each of an−1, · · · by certain of their predecessors. We continue until an explicit formula is obtained.

For example, the Fibonacci sequence is also defined by the recurrence relation.

Example (Tower of Hanoi). Find an explicit formula for an, the minimum number of moves in which
the n-disk Tower of Hanoi puzzle can be solved.

Given an = 2an−1 + 1, a1 = 1, by applying the iterative method, we obtain:

an = 2an−1 + 1

= 2(2an−2 + 1) + 1

= 22an−2 + 2 + 1

= 22(2an−3 + 1) + 2 + 1

= 23an−3 + 22 + 2 + 1

= · · ·
= 2n−1a1 + 2n−2 + 2n−3 + · · ·+ 2 + 1

= 2n−1 + 2n−2 + 2n−3 + · · ·+ 2 + 1

= 2n − 1

CHAPTER 2. ANALYSIS 5

Chapter 3

ADT, List, Stack and Queue

3.1 Abstract Data Type (ADT)

We use data abstraction to simplify software development since it facilitates the decomposition of the
complex task of developing a software system. To put it simply, data abstraction shows only the essential
details of data, while the implementation details are hidden.

For example, as will be discussed later, List, Stack, and Queue (LSQ) are forms of data abstraction, or
what we call abstract data types. We can use them to retrieve or store data, but we don’t know how
they are actually stored or indexed.

Data encapsulation, or information hiding, is the concealing of the implementation of a data object from
the outside world. Through data abstraction, we can separate the specification of a data object from its
implementation.

A data type is a collection of objects and a set of operations that act on those objects. An abstract data
type (ADT) is a data type organized in such a way that we can separate the specification of the object
and the specification of the operations on the object. Abstract data types are simply a set of operations,
and they are mathematical abstractions.

Note that abstraction is like a functional description without knowing how to use it, while implementa-
tion, on the contrary, is something that can be used and executed.

In summary, an ADT is a high-level description of how data is organized and the operations that can be
performed on it. It abstracts the details of its implementation and only exposes the operations that are
allowed on data structures.

3.2 List

The first abstract data type in this chapter is List.

3.2.1 Definition

When dealing with a general list of the form a1, a2, · · · , an, we say that the size of this list is n. If the
list is of size 0, we call it the null list. Except null list, we say that ai+1 follows/succeeds ai(i < n) and
that ai−1 precedes ai(i > 1).

The first element of the list is a1, and the last element is an. The predecessor of a1 and the successor of
an is not defined.

3.2.2 Operations

A list of elements of type T is a finite sequence of elements of T together with the following operations:

6

- Create the list and make it empty.

- Determine whether the list is empty or not.

- Determine whether the list is full or not.

- Find the size of the list.

- Retrieve any entry from the list, provided that the list is not empty.

- Store a new entry, replacing the entry at any position in the list, provided that the list is not empty.

- Insert a new entry into the list at any position, provided that the list is not full.

- Delete any entry from the list, provided that the list is not empty.

- Clear the list to make it empty.

With these operations, we can perform various tasks on the list ADT.

3.2.3 Implementation

We can use an array to implement a list. Most of the operations follow linear time, for example,
print_list, make_null, find, and find_kth. For insertion, there could be cases where the list is full,
and that’s why we need dynamically allocated space. For deletion, we need to find the element, perform
the deletion, and reallocate space, which might require more time. Thus, we introduce the linked list.

3.2.4 Linked List

There are several types of linked lists:

- Singly Linked List

- Singly Linked List with Header

- Doubly Linked List

- Circularly Linked List

- Circularly Doubly Linked List

CHAPTER 3. ADT, LIST, STACK AND QUEUE 7

A polynomial can be represented as

F (X) =

N∑
i=0

AiX
i

For example, F (X) = 4X3+2X2+5X+1. We may want to perform operations like addition, subtraction,
multiplication, and differentiation. Using an array data structure, the time complexity may be larger due
to the need to store all terms, including zero coefficients. However, with a linked list, we can efficiently
perform these operations by traversing the linked list and processing only the non-zero terms.

Also, note that a circular list saves space but not time. It is useful for smaller datasets. However, for a
larger number of students and courses, the use of such a circular list might be a waste of space.

In summary, a list abstract data type represents an ordered collection of elements. They can be added
or removed at any position in the list. It provides methods to access elements by their position.

By using different types of linked lists, we can achieve various goals. For example, we can print all the
elements in reverse using a doubly linked list.

3.3 Stack

3.3.1 Definition

A stack is an ordered list in which all insertions and deletions are made at one end, called the top. It
follows the Last In, First Out (LIFO) rule.

3.3.2 Operations

A stack of elements of type T is a finite sequence of elements of T along with the following operations:

- Create the stack.

- Determine if the stack is empty or not.

- Determine if the stack is full or not.

- Determine the number of entries in the stack.

- Insert (Push) a new entry at one end of the stack, called its top, if the stack is not full.

- Retrieve the entry at the top of the stack, if the stack is not empty.

- Delete (Pop) the entry at the top of the stack, if the stack is not empty.

- Clear the stack to make it empty.

3.3.3 Implementation

We can use a doubly linked list to implement the stack, where both Push and Pop operations happen at
the front of the list. We can use the Top operation to examine the element at the front of the list. In
this case, the space complexity would be O(3n), and the time complexity would be O(c), where c is a
constant.

Alternatively, we can use an array to implement the stack, since we only perform insertion and deletion
at the top. However, we need to declare the size ahead of time and use TopOfStack as the counter to
point to the top of the stack. If an array is used, the space complexity would be O(n), and the time
complexity would be O(1).

CHAPTER 3. ADT, LIST, STACK AND QUEUE 8

3.3.4 Application

Balance Symbols

We can use a stack to balance symbols, which is commonly used in compilers to check for syntax errors.
While compiling, an empty stack is created, and an opening symbol is pushed onto the stack. Then,
when a closing symbol is encountered, it is popped from the stack. There could be four types of errors:

1. Stack Overflow: Too many brackets.

2. Mismatched Symbols: The opening and closing symbols don’t match.

3. Empty Stack: Attempting to pop from an empty stack.

4. Non-Empty Stack: The stack isn’t empty at the end of the process.

Reverse Polish Calculator

We can also use a stack to make a Reverse Polish Calculator. There are three forms of notation: prefix,
postfix, and infix. For example, if the expression is a× b, then:

1. Prefix: ×ab

2. Postfix: ab×
3. Infix: a× b

In Reverse Polish notation (postfix), parentheses are not needed. Using a stack, we can calculate the
answer by evaluating the postfix expression. For example, when the character is a number, it is pushed
onto the stack. If the character is an operator, two elements are popped from the stack, and the operation
is performed on those two elements.

In summary, the stack abstract data type is a collection of elements with two main operations: push and
pop. All operations happen at the top, and it follows the Last In, First Out (LIFO) approach.

3.4 Queue

3.4.1 Definition

A Queue is an ordered list in which all insertions take place at one end, the rear, while all deletions take
place at the other end, the front. It follows the First In, First Out (FIFO) rule.

3.4.2 Operations

Several operations can be performed on a queue:

- Create the queue

- Determine if the queue is empty or not.

- Insert (Enqueue) a new entry at one end of the queue, called its rear, if the queue is not full.

- Delete (Dequeue) an entry at the other end of the queue, called its front, if the queue is not empty.

- Retrieve the entry at the front of the queue, if the queue is not empty.

- Clear the queue and make it empty.

3.4.3 Implementation

We can use both linear and circular arrays to implement a queue. For a linear array, we can have two
indices that always increase. However, this might lead to overflow. Additionally, the array may need to
be shifted forward or backward after each enqueue or dequeue operation. For a circular array, we have
the following possibilities:

CHAPTER 3. ADT, LIST, STACK AND QUEUE 9

- Front and rear indices, with one position left vacant.

- Front and rear indices, with a Boolean variable indicating fullness or emptiness.

- Front and rear indices, with an integer variable counting entries.

- Front and rear indices taking special values to indicate emptiness.

3.4.4 Application

Queues are commonly used in various applications, such as in printer queues, airline control systems,
and bank queues.

In summary, the physical model of a queue is a linear array, with the front always in the first position.
All entries are moved up the array whenever the front is deleted. It follows the First In, First Out (FIFO)
rule.

CHAPTER 3. ADT, LIST, STACK AND QUEUE 10

	Introduction
	Overview
	Algorithm
	Study of Data

	Analysis
	Complexity
	Recurrence Relations

	ADT, List, Stack and Queue
	Abstract Data Type (ADT)
	List
	Stack
	Queue

