
CENG3420 Computer Organization & Design

Ryan Chan

March 13, 2025

Abstract

This is a note for CENG3420 Computer Organization & Design for self-revision purpose ONLY.
Some contents are taken from lecture notes and reference book.
Mistakes might be found. So please feel free to point out any mistakes.
Contents are adapted from the lecture notes of CENG3420, prepared by Bei Yu, as well as some online
resources.

https://www.cse.cuhk.edu.hk/~byu/

Contents

1 Introduction 3
1.1 The Manufacturing Process of Integrated Circuit . 3
1.2 Power . 3

2 Instruction Set Architecture (ISA) 4
2.1 Organization . 4
2.2 Instruction Set Architecture . 4
2.3 RISC-V . 5

3 Arithmetic Instructions 6
3.1 Introduction to RISC-V . 6
3.2 Arithmetic and Logical Instructions . 7
3.3 Data Transfer Instruction . 9

4 Control Instruction 11
4.1 Introduction to Register . 11
4.2 Control Instructions . 11
4.3 Accessing Procedures . 14

5 Logic basis 17
5.1 Numeral System . 17
5.2 Logic Gates . 17

6 Arithmetic and Logic Unit 18
6.1 Overview . 18
6.2 Addition Unit . 19
6.3 Multiplication and Division . 19
6.4 Shifter . 21

7 Floating Numbers 23

8 Datapath 25
8.1 Overview . 25
8.2 Operations . 26
8.3 Datapath . 27

9 Pipeline 29
9.1 Motivations . 29
9.2 Pipeline Basis . 29
9.3 Structural Hazards . 31
9.4 Clocking Methodology . 31

10 More on Pipeline 32

11 Performance 33

12 Memory 34

1

13 Cache 35

14 Cache Disc 36

15 Virtual Machine 37

16 Instruction-Level Parallelism 38

CONTENTS 2

Chapter 1

Introduction

This course is about how computers work.

1.1 The Manufacturing Process of Integrated Circuit

For this chapter, only a few calculations need to be considered:

1. Yield = The proportion of working dies per wafer.

2. Cost per die =
Cost per wafer

Dies per wafer × Yield

3. Dies per wafer ≈ Wafer area
Die area

(since wafers are circle)

4. Yield =
1[

1 + (Defects per area×Die area
2)

]2
Remark. Note that the defects on average = Defects per unit area × Die area.

1.2 Power

Power = Capacitive load × Voltage2 × Frequency

Example. For a simple processor, the capacitive load is reduced by 15%, voltage is reduced by 15%,
and the frequency remains the same. Then, how much power consumption can be reduced?

Solution:
1− (1− 15%)× (1− 15%)× 1 = 27.75%

Thus, 27.75% of the power consumption can be reduced.

3

Chapter 2

Instruction Set Architecture (ISA)

2.1 Organization

Computer components include the processor, input, output, memory, and network. The primary focus
of this course is on the processor and its interaction with the memory system. However, it is impossible
to understand their operation by examining each transistor individually due to their enormous quantity.
Therefore, abstraction is necessary.

Both the control unit and datapath need circuitry to manipulate instructions — for example, deciding
the next instruction, decoding, and executing instructions.

There is also system software, such as the operating system and compiler, which translate programs
written in high-level languages into machine instructions.

For example, after a program is written in a high-level language (like C), the compiler translates it into
assembly language. Then, the assembler converts the assembly code into machine code (object code).
The machine code is stored in memory, and the processor’s control unit fetches an instruction from
memory, decodes it to determine the operation, and signals the datapath to execute the instruction. The
processor then fetches the next instruction from memory, and this cycle repeats.

2.2 Instruction Set Architecture

The instruction set architecture (ISA) is the bridge between hardware and software. It is the interface
that separates software from hardware and includes all the information necessary to write a machine
language program, such as instructions, registers, memory access, I/O, etc.

To put it simple, ISA is a formal specification of the instruction set that is implemented in the machine
hardware. It defines how software can control the hardware by specifying the instructions, registers,
memory addressing modes, and I/O operations that the processor can execute.

Assembly language instructions are the language of the machine. We aim to design an ISA that makes
it easy to build hardware and compilers while maximizing performance and minimizing cost. Therefore,
in this course, we focus on the RISC-V ISA.

In a Reduced Instruction Set Computer (RISC), we have fixed instruction lengths, a load-store instruction
set, and a limited number of addressing modes and operations. Thus, it is optimized for speed.

There are four design principles in RISC-V:

1. Simplicity favours regularity.

2. Smaller is faster.

3. Make the common case fast.

4. Good design demands good compromises.

4

2.3 RISC-V

There are five Instruction Categories:

1. Load and Store instruction

2. Bitwise instructions

3. Arithmetic instructions

4. Control transfer instructions

5. Pseudo instructions

31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcodeR-Type

31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcodeI-Type

31 25 24 20 19 15 14 12 11 7 6 0

imm[11:5] rs2 rs1 funct3 imm[4:0] opcodeS-Type

31 12 11 7 6 0

imm[31:12] rd opcodeU-Type

Register names ABI Names Description

x0 zero Hard-Wired Zero
x1 ra Return Address
x2 sp Stack Pointer
x3 gp Global Pointer
x4 tp Thread Pointer
x5 t0 Temporary / Alternate Link Register

x6-7 t1 - t2 Temporary Register
x8 s0 / fp Saved Register / Frame Pointer
x9 s1 Saved Register

x10-11 a0 - a1 Function Argument / Return Value Registers
x12-17 a2 - a7 Function Argument Registers
x18-27 s2 - s11 Saved Register
x28-31 t3 - t6 Temporary Register

CHAPTER 2. INSTRUCTION SET ARCHITECTURE (ISA) 5

Chapter 3

Arithmetic Instructions

3.1 Introduction to RISC-V

Previously, we had the RV32I Unprivileged Integer Register table:

Register names ABI Names Description

x0 zero Hard-Wired Zero
x1 ra Return Address
x2 sp Stack Pointer
x3 gp Global Pointer
x4 tp Thread Pointer
x5 t0 Temporary / Alternate Link Register

x6-7 t1 - t2 Temporary Register
x8 s0 / fp Saved Register / Frame Pointer
x9 s1 Saved Register

x10-11 a0 - a1 Function Argument / Return Value Registers
x12-17 a2 - a7 Function Argument Registers
x18-27 s2 - s11 Saved Register
x28-31 t3 - t6 Temporary Register

There are some important registers to note:

Return address (ra): Used to save the function return address, usually PC + 4.

Stack pointer (sp): Holds the base address of the stack. It must be aligned to 4 bytes.

Global pointer (gp): Holds the base address of the location where global variables reside.

Argument registers (a0–a7): Used to pass arguments to functions.

Also, we have the RV32I base types:
31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcodeR-Type

31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcodeI-Type

31 25 24 20 19 15 14 12 11 7 6 0

imm[11:5] rs2 rs1 funct3 imm[4:0] opcodeS-Type

31 12 11 7 6 0

imm[31:12] rd opcodeU-Type

6

Here, the opcode (7 bits) specifies the operation. rs1 (5 bits) is the register file address of the first source
operand. rs2 (5 bits) is the register file address of the second source operand. rd (5 bits) is the register
file address of the destination for the result. imm (12 bits or 20 bits) is the immediate value field. funct
(3 bits or 10 bits) is the function code that augments the opcode.

Note that the rs1 and rs2 fields are kept in the same place, which causes the imm field in S-type
instructions to be separated into two parts.

3.2 Arithmetic and Logical Instructions

Here, we introduce some simple arithmetic and logical instructions.

3.2.1 Arithmetic Instructions

In RISC-V, each arithmetic instruction performs a single operation and specifies exactly three operands,
all of which are contained in the datapath’s register file.

For example, we have:

Code 3.2.1.

add t0, a1, a2 # t0 = a1 + a2
sub t0, a1, a2 # t0 = a1 - a2

which can be understood as:

destination = source1 op source2

These instructions follow the R-type format.

3.2.2 Immediate Instructions

Small constants are often used directly in typical assembly code to avoid load instructions. RISC-V
provides special instructions that contain constants. For example:

Code 3.2.2.

addi sp, sp, 4 # sp = sp + 4
slti t0, s2, 15 # t0 = 1 if s2 < 15

These instructions follow the I-type format. The constants are embedded within the instructions, limiting
their values to the range from −211 to 211 − 1.

Example.
1 .global _start
2

3 .text
4 _start:
5 li a1, 20
6 li a2, 23
7 add t0, a1, a2
8 sub t1, a1, a2

This will give the result:
t0 = 0x2b, t1 = 0xfffffffd

Note. The calculation of t1 involves two’s complement, which will be introduced later.

If we want to load a 32-bit constant into a register, we must use two instructions:

CHAPTER 3. ARITHMETIC INSTRUCTIONS 7

Code 3.2.3.

lui t0, 1010 1010 1010 1010 1010b
ori t0, t0, 1010 1010 1010b

Here, lui loads the upper 20 bits with an immediate value, and ori sets the lower 12 bits using an
immediate value.

If a number is signed, then 1000 0000 ... represents the most negative value, and 0111 1111 ...
represents the most positive value, since the first bit is used to distinguish between signed and unsigned
values.

3.2.3 Shift Operations

We need operations to pack and unpack 8-bit characters into a 32-bit word, and we can achieve this by
using shift operations. We can shift all the bits left or right:

Code 3.2.4.

slli t2, s0, 8 # t2 = s0 << 8 bits
srli t2, s0, 8 # t2 = s0 >> 8 bits

These instructions follow the I-type format. The above shifts are called logical because they fill the
vacancy with zeros. Notice that a 5-bit shamt field is enough to shift a 32-bit value 25 − 1 or 31 bit
positions.

Example.
1 .global _start
2

3 .text
4 _start:
5 li a1, 20
6 li a2, 23
7 slli t0, a1, 2
8 srli t1, a1, 1

Line 7: 10100 -> 1010000 # after slli 2 bits
Line 8: 10111 -> 01011 # after srli 1 bits

3.2.4 Logical Operations

There are numbers of bitwise logical operations in RISC-V ISA. For example:

R format:

Code 3.2.5.

and t0, t1, t2 # t0 = t1 & t2
or t0, t1, t2 # t0 = t1 | t2
xor t0, t1, t2 # t0 = t1 & (not t2) + (not t1) & t2

I format:

Code 3.2.6.

andi t0, t1, 0xFF00 # t0 = t1 & 0xFF00
ori t0, t1, 0xFF00 # t0 = t1 | 0xFF00

CHAPTER 3. ARITHMETIC INSTRUCTIONS 8

Example.
1 .global _start
2

3 .text
4 _start:
5 li a1, 20
6 li a2, 23
7 and t0, a1, a2
8 or t1, a1, a2
9 xor t2, a1, a2

10 andi t3, a1, 0x12
11 ori t4, a2, 0x21

a1 = 10100, a2 = 10111
Line 7: t0 = 10100 & 10111 -> 10100
Line 8: t1 = 10100 | 10111 -> 10111
Line 9: t2 = 10100 ^ 10111 -> 00011
Line 10: t3 = 10100 & 10010 -> 10000
Line 11: t4 = 10111 100001 -> 110111

3.3 Data Transfer Instruction

There are two basic data transfer instructions for accessing data memory:

Code 3.3.1.

lw t0, 4(s3) # load word from memory to register
sw t0, 8(s3) # store word from register to memory

The data is loaded or stored using a 5-bit address. The memory address is formed by adding the contents
of the base address register to the offset value.

Example.
1 .global _start
2

3 .data
4 a: .word 1 2 3 4 5
5

6 .text
7 _start:
8 la a1, a
9 lw t0, 0(a1)

10 lw t1, 4(a1)
11 lw t2, 8(a1)
12 lw t3, 12(a1)
13 lw t4, 16(a1)
14 addi t4, t4, 1
15 sw t4, 20(a1)
16 lw t5, 20(a1)

t0 = 0x01, t1 = 0x02
t2 = 0x03, t3 = 0x04
t4 = 0x06, t5 = 0x06

Remark. Address is byte-base, thus the increment is 4 when accessing a1.

These instructions follow the I-type format.

Since 8-bit bytes are useful, most architectures address individual bytes in memory.

Note that in byte addressing, we have Big Endian, where the leftmost byte is the word address, and
the rightmost byte is the word address for Little Endian. In RISC-V, we use Little Endian, where the
leftmost byte is the least significant byte.

We also have loading and storing byte operations:

CHAPTER 3. ARITHMETIC INSTRUCTIONS 9

Code 3.3.2.

lb t0, 1(s3) # load byte from memory
sb t0, 6(s3) # store byte to memory

Here, lb places the byte from memory into the rightmost 8 bits of the destination register and performs
signed extension. sb then takes the byte from the rightmost 8 bits of a register and writes it to memory.

Example. Assume that in memory, we have:

0xFFFFFFFF 4
0x009012A0 0

Now, we have the following operation:

add s3, zero, zero
lb t0, 1(s3)
sb t0, 6(s3)

What is the value left in t0? What word is changed in memory and to what? What if the machine
was Big Endian?

Solution:

1. t0 = 0x00000012

2. New memory:

0xFF12FFFF 4
0x009012A0 0

3. t0 = 0x00000090, New memory:

0xFFFF90FF 4
0x009012A0 0

CHAPTER 3. ARITHMETIC INSTRUCTIONS 10

Chapter 4

Control Instruction

4.1 Introduction to Register

Previously we have take a look on the instruction fields of RISC-V. Now, we can take a closer look on it.

31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcodeR-Type

31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcodeI-Type

31 25 24 20 19 15 14 12 11 7 6 0

imm[11:5] rs2 rs1 funct3 imm[4:0] opcodeS-Type

31 30 25 24 20 19 15 14 12 11 8 7 6 0

imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcodeB-Type

31 12 11 7 6 0

imm[31:12] rd opcodeU-Type

31 30 21 20 19 12 11 7 6 0

imm[20|10:1|11|19:12] rd opcodeJ-Type

There are a total of five instruction categories, including

1. Load and Store instruction

2. Bitwise instructions

3. Arithmetic instructions

4. Control transfer instructions

5. Pseudo instructions

The RISC-V register file holds 32 32-bit general-purpose registers, with two read ports and one write
port. Thus, there are at most three operands. Registers are faster than main memory, and they are
easier for the compiler to use. However, register files with more locations are slower.

4.2 Control Instructions

In RISC-V, we have control flow instructions. For example, we have conditional branch instructions:

11

Code 4.2.1.

bne s0, s1, Lbl # go to Lbl if s0 != s1
beq s0, s1, Lbl # go to Lbl if s0 == s1

These instructions follow the B-format.

Example.
1 .global _start
2

3 .text
4 _start:
5 li a0, 1
6 li a1, 1
7 li t0, 20
8 li t1, 23
9 bne t0, t1, inst1

10 addi a0, a0, 1
11 beq t0, t1, inst2
12 inst1: addi a0, a0, 2
13 bne t0, zero, end
14 inst2: addi a0, a0, 3
15 end: sub a0, a0, a1

Line 5: a0 = 1
Line 6: a1 = 1
Line 7: t0 = 20
Line 8: t1 = 23
Line 9: t0 != t1 -> goto inst1
Line 10 & 11 -> ignored
Line 12: a0 = 3
Line 13: t0 != 0 -> goto end
Line 14 -> ignored
Line 15: a0 = 2

We need some extra instructions to support branch instructions. For example, we can use slt to support
the branch-if-less-than instruction.

Code 4.2.2.

slt t0, s0, s1 # if s0 < s1, then t0 = 1; else, t0 = 0
slti t0, s0, 25 # if s0 < 25, then t0 = 1; else, t0 = 0 (signed)
sltu t0, s0, s1 # if s0 < s1, then t0 = 1; else, t0 = 0 (unsigned)
sltiu t0, s0, 25 # if s0 < 25, then t0 = 1; else, t0 = 0 (immediate unsigned)

This instruction follows R format or I format.

Example.
1 .global _start
2

3 .text
4 _start:
5 li a0, 1
6 li t0, 20
7 li t1, 23
8 slt a1, t0, t1
9 beq a0, a1, inst1

10 addi a0, a0, 2
11 inst1: addi a0, a0, 3

Line 5: a0 = 1
Line 6: t0 = 20
Line 7: t1 = 23
Line 8: t0 < t1 -> a1 = 1
Line 9: a0 == a1 -> goto inst1
Line 10: ignored
Line 11: a0 = 4

We can then use these instructions to create other conditions. We can also check for boundaries using
these instructions. For example, with slt and bne, we can implement a branch-if-less-than:

Code 4.2.3.

slt t0, s1, s2 # t0 set to 1 if s1 < s2
bne t0, zero, Label

Treating signed numbers as if they were unsigned provides a low-cost way to perform these checks. For
example:

CHAPTER 4. CONTROL INSTRUCTION 12

Code 4.2.4.

sltu t0, s1, t2 # t0 = 0 if s1 > t2 (max)
or s1 < 0 (min)

beq t0, zero, IOOB # go to IOOB if t0 = 0

Since negative numbers in 2’s complement look like very large numbers in unsigned notation, it checks
both if t0 is less than or equal to zero and greater than t2.

There are also unconditional branch instructions:

Code 4.2.5.

jal zero, Label # go to Label, Label can be immediate value
j Label # go to Label and discard return address

These instructions follow J format.

Example.
1 .global _start
2

3 .text
4 _start:
5 li a0, 1
6 li t0, 20
7 jal ra, loop
8 loop:
9 addi a0, a0, 1

10 beq a0, t0, end
11 j loop
12 end:
13 addi a0, a0, 1

Line 5: a0 = 1
Line 6: t0 = 20
Line 7: jump to Line 9
Line 9: a0 = 2, 3, ...
Line 10: a0 != t0
Line 11: keep looping
Line 13: a0 = 21

If the branch destination is further away than can be captured in 12 bits, we can use the following to
perform a jump:

bne s0, s1, L2
j L1

L2: ...

Example. How a while-loop in C is compiled? For example

while (save[i] == k) i += 1;

Assume that i and k correspond to registers s3 and s5, and the base of the array save is in s6.

Solution:

Loop: slli t1, s3, 2 # shift left 4 bytes (array operation)
add t1, t1, s6 # t1 = address of save[i]
lw t0, 0(t1) # Temp reg t0 = save[i]
bne t0, s5, Exit # go to Exit if save[i] != k
addi s3, s3,1 # i = i + 1
j Loop # go to Loop

Exit:

CHAPTER 4. CONTROL INSTRUCTION 13

Remark. Left shifting s3 is used to align the word address (4 bytes), and it is increased by 1 in
addi. Thus, each time it is increased by 4.

Address of save[i] = save array address + shift address (i× 4).

4.3 Accessing Procedures

Other than jal, we have branch instructions that return to the original location.

Code 4.3.1.

jal ra, label # jump and link
jalr x0, 0(ra) # return

Here, jal saves PC + 4 by default into ra, so that when the procedure returns, it proceeds to the next
instruction. jalr then uses the return address to return to the next procedure.

Example.
1 .global _start
2

3 .text
4 _start:
5 li a0, 20
6 li a1, 23
7 jal ra, add_two_numbers
8 addi t1, a2, 0
9 j end

10 add_two_numbers:
11 mv a3, a0
12 mv a4, a1
13 add a2, a3, a4
14 jalr zero, 0(ra)
15 end:
16 addi t1, t1, 1

Line 5: a0 = 20
Line 6: a1 = 23
Line 7: jump to Line 11
Line 11: a3 = 20
Line 12: a4 = 23
Line 13: a2 = 43
Line 14: jump to Line 8
Line 8: t1 = 43
Line 9: jump to Line 16
Line 16: t1 = 44

However, the number of registers is not enough for some operations. Thus, we use the stack, which is a
last-in-first-out (LIFO) data structure. We use sp to address the stack, and it grows from high address
to low address. To push data onto the stack, we use sp = sp - 4. To pop data from the stack, we use
sp = sp + 4.

To allocate space on the stack, we have a frame pointer (fp) that points to the first word of the frame of
a procedure, providing a stable base register for the procedure. fp is initialized using sp on a call, and
sp is restored using fp on a return.

CHAPTER 4. CONTROL INSTRUCTION 14

Example.
1 .global _start
2

3 .text
4 _start:
5 li a0, 20
6 li a1, 23
7 jal ra, add_two_numbers
8 addi t1, a2, 0
9 j end

10 add_two_numbers:
11 addi sp, sp, -8
12 sw a0, 4(sp)
13 sw a1, 0(sp)
14 add a2, a0, a1
15 lw a0, 4(sp)
16 lw a1, 0(sp)
17 addi sp, sp, 8
18 jalr zero, 0(ra)
19 end:
20 addi t1, t1, 1

Line 5: a0 = 20
Line 6: a1 = 23
Line 7: jump to Line 11
Line 11: assign 8 bytes in stack

(from high to low)
Line 12: save argument in stack 4(sp)
Line 13: save argument in stack 0(sp)
Line 14: a2 = 43
Line 15: load argument from stack 4(sp)
Line 16: load argument from stack 0(sp)
Line 17: free stack
Line 18: jump to Line 8
Line 8: t1 = 43
Line 9: jump to Line 16
Line 16: t1 = 44

Example. Leaf procedures are ones that do not call other procedures. Give the RISC-V assembler
code for the follows.

int leaf_ex (int g, int h, int i, int j)
{

int f;
f = (g + h) - (i + j)
return f;

}

Solution: Suppose g, h, i, and j are in a0, a1, a2, a3:

leaf_ex:
addi sp, sp, -8 # initialize stack room
sw t1, 4(sp) # save t1 on stack
sw t0, 0(sp) # save t0 on stack
add t0, a0, a1
add t1, a2, a3
sub s0, t0, t1
lw t0, 0(sp) # restore t0
lw t1, 4(sp) # restore t1
addi sp, sp, 8 # free stack
jalr zero, 0(ra)

For nested procedures, we can store the return address on the stack so that, at the end, we can return
to the original return address. For example, to find the factorial of a number, we can use:

CHAPTER 4. CONTROL INSTRUCTION 15

Code 4.3.2.

fact:
addi sp, sp, -8 # initialize stack pointer
sw ra, 4(sp) # save return address
sw a0, 0(sp) # save argument n
slti t0, a0, 1 # test for n < 1
beq t0, zero, L1 # if n >= 1, go to L1
addi s0, zero, 1 # else return 1 in s0
addi sp, sp, 8 # adjust stack pointer
jalr zero, 0(ra) # return to caller

L1:
addi a0, a0, -1 # n >= 1, so decrement n
jal ra, fact # call fact with (n-1)

this is where fact returns
bk_f:

lw a0, 0(sp) # restore argument n
lw ra, 4(sp) # restore return address
addi sp, sp, 8 # free stack pointer
mul s0, a0, s0 # s0 = n * fact(n-1)
jalr zero, 0(ra) # return to caller

CHAPTER 4. CONTROL INSTRUCTION 16

Chapter 5

Logic basis

5.1 Numeral System

In common we use decimal, binary, octal and hexadecimal number systems. radix or base of the number
system is the total number of digits allowed in the number system.

The conversion from a decimal integer to another number system is simple: divide the decimal number
by the radix and save the remainder. Keep repeating the steps until the quotient is zero. The result is
the reverse order of the remainders.

As shown in the previous chapter, we need to deal with signed integers. The original notation is simple,
where we use the first bit of the binary string to represent the sign. For example, 10012 represents -1
and 00012 represents 1, which is called 1’s complement. However, this leads to the situation where there
are two types of zero: negative zero and positive zero.

Thus, we use 2’s complement. We first complement all the bits and then add 1. For example, if we have
-6 and want to represent it in binary notation, we have:

610 = 0000 0000 ... 01102 ⇒ 1111 1111 ... 10012 + 1 ⇒ 1111 1111 ... 1010 = −6

For an n-bit signed binary numeral system, the largest positive number is 2n−1 − 1, and the smallest
negative number is −2n−1.

There are two types of signals: analog and digital. For an analog signal, it varies smoothly over time.
For a digital signal, it maintains a constant level and then changes to another constant level at regular
intervals. We can use 0 and 1 to represent a digital signal, with 1 being High/True/On/... and 0 being
Low/False/Off/....

5.2 Logic Gates

Logic gates can produce different outputs for the same input signal. We can use a truth table to describe
how the logic circuit’s output depends on the logic levels of the inputs. For example, here is the truth
table for an AND gate:

A B Output (A AND B)

0 0 0
0 1 0
1 0 0
1 1 1

17

Chapter 6

Arithmetic and Logic Unit

6.1 Overview

We can use the following to understand the abstract implementation:

Here, the ALU (Arithmetic Logic Unit) is responsible for performing arithmetic and logical operations.
It receives instructions from the registers or instruction memory.

Before we dive into this topic, we can take a look on VHDL. VHDL is a hardware description language
used to model and simulate the behavior of electronic systems, particularly digital circuits. It allows
designers to describe the structure and functionality of a circuit at different levels of abstraction, from
the behavioral to the structural level.

In the basic structure of VHDL, we design entity-architecture descriptions. The entity defines the
system’s interface, including externally visible characteristics such as ports and generic parameters. The
architecture describes the system’s internal behavior or structure, including internal signals and how the
components interact. VHDL uses a time-based execution model to simulate and model the concurrent
operations of digital systems.

For example, the assignment of A + B to result in the context of a Carry-Save Adder (CSA) would
typically be part of the architecture description, as it defines the internal behavior and computation of
the system.

For machine number representation, we use binary number integers. However, we need to consider
storage limitations (overflow) and the representation of negative numbers.

In 32-bit signed numbers, the range is from 231 − 1 to −231. However, if the bit string represents an
address, we only need to deal with unsigned integers, which range from 0 to 232 − 1.

18

To perform extension, we need to consider sign extension. Sign extension copies the most significant bit
into the other bits to preserve the sign of the number. For example, to extend 0010, we have 0000 0010,
and for 1010, we have 1111 1010.

Then, let’s take a look at some arithmetic units.

6.2 Addition Unit

To build a 1-bit binary adder, we can use the XOR gate. Here’s the truth table for the 1-bit adder:

A B Carry in Carry out S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Where:

- S = A⊕B ⊕ Carry in

- Carry out = (A&B)|(A&Carry in)|(B&Carry in)

To build a 32-bit adder, we can connect the carry-out of the least significant bit from the previous adder
to the carry-in of the next least significant bit, and connect all 32 adders in sequence. This is called the
Ripple Carry Adder. However, it is slow and involves a lot of glitching.

Glitching refers to the invalid and unpredictable output that can be read by the next stage, potentially
resulting in incorrect behavior. This can be interpreted as a delay, where the outputs are not stable in
time to be used in the subsequent operations.

The critical path (the longest sequence of dependent operations) is n×CP, where n is the number of bits
and CP is the time required for one full operation. This makes the Ripple Carry Adder slow because
each bit’s carry-out depends on the previous bit’s carry-in, leading to a cumulative delay.

With the control unit, we can use the same structure to implement both an adder and a subtractor.

By tailoring the ALU, we can support various instructions in the ISA, including logic operations, branch
operations, and others.

For example, after performing subtraction, we mark the result as 1 if the subtraction yields a negative
result, and 0 otherwise. Then, we tie the most significant bit to the low-order bit of the input. This way,
we complete a slt operation.

Overflow occurs when the result is too large to be represented. For example, adding two positive numbers
yields a negative, adding two negative numbers gives a positive, subtracting a negative from a positive
gives a negative, or subtracting a positive from a negative gives a positive. This leads to an exception.
To fix this, we can modify the most significant bit to determine the overflow output setting.

6.3 Multiplication and Division

6.3.1 Multiplication

Multiplication is more complicated than addition. It can be accomplished by shifting and adding. For
an n-bit × m-bit multiplication, we must have n+m bits to cover all possible products.

CHAPTER 6. ARITHMETIC AND LOGIC UNIT 19

The first version of multiplication needs a 2n-bit adder for the multiplication of an n-bit and n-bit
number, starting from the right half.

The refined version simplifies this by requiring only an n-bit adder for the same operation.

For example, when calculating 00102 × 00112, we have

0010 × 0011
Iteration Step Multiplier Multiplicand Product

0 Initial values 0011 0000 0010 0000 0000

1
1a: 1 ⇒ Prod = Prod + Mcand 0011 0000 0010 0000 0010

2: Shift left Multiplicand 0011 0000 0100 0000 0010
3: Shift right Multiplier 0001 0000 0100 0000 0010

2
1a: 1 ⇒ Prod = Prod + Mcand 0001 0000 0100 0000 0110

2: Shift left Multiplicand 0001 0000 1000 0000 0110
3: Shift right Multiplier 0000 0000 1000 0000 0110

3
1: 0 ⇒ No operation 0000 0000 1000 0000 0110

2: Shift left Multiplicand 0000 0001 0000 0000 0110
3: Shift right Multiplier 0000 0001 0000 0000 0110

4
1: 0 ⇒ No operation 0000 0001 0000 0000 0110

2: Shift left Multiplicand 0000 0010 0000 0000 0110
3: Shift right Multiplier 0000 0010 0000 0000 0110

mul performs a 32-bit × 32-bit multiplication and places the lower 32 bits in the destination register.
mulh, mulhu, and mulhsu perform the same multiplication but return the upper 32 bits of the full 64-bit
product.

6.3.2 Division

Division is just a series of quotient digit guesses, left shifts, and subtractions.

In the first version of division, the 32-bit divisor starts in the left half of the divisor register and is shifted
right 1 bit each iteration.

CHAPTER 6. ARITHMETIC AND LOGIC UNIT 20

The refined version combines the Quotient register with the right half of the Remainder register.

div generates the remainder in hi and the quotient in lo. It performs a 32-bit by 32-bit signed integer
division of rs1 by rs2, rounding towards zero. div and divu perform signed and unsigned integer division
of 32 bits by 32 bits. rem and remu provide the remainder of the corresponding division operation.

6.4 Shifter

Shifts by a constant are encoded as a specialization of the I-type format. The operand to be shifted is
in rs1, and the shift amount is encoded in the lower 5 bits of the I-immediate field.

Code 6.4.1.

srli rd, rs1, imm[4:0]
srai rd, rs1, imm[4:0]

slli is a logical left shift, srli is a logical right shift, and srai is an arithmetic right shift. Logical
shifts fill with zeros, while arithmetic right shifts fill with the sign bit. For example, a logical right shift
of 1111 by 2 bits results in 0011, while an arithmetic right shift of 1111 by 2 bits results in 1111.

A simple shifter can be accomplished by using a series of multiplexers to shift the input data by a
specified number of bit positions, either left or right.

CHAPTER 6. ARITHMETIC AND LOGIC UNIT 21

For example, to do a right shift, let Right = 1 and nop = Left = 0. Then, Bi−1 = Ai, where B is the
shifted output and A is the input.

In a parallel programmable shifter, we can use control signals to decide the shift amount, direction, and
type. The control logic determines how many positions the data should be shifted, whether it should
be shifted left or right, and whether the shift should be logical or arithmetic. This allows for flexible
shifting operations based on the input values and the specified parameters.

A logarithmic shifter is a more complex shifter that can perform shifts based on logarithmic scaling. It
involves specialized shifting mechanisms used for fast multiplication and division by powers of 2. With
one shifter, we can perform a shift by 0 or 1 bit; with two shifters, we can perform shifts by 0, 1, 2, or 3
bits, and so on.

CHAPTER 6. ARITHMETIC AND LOGIC UNIT 22

Chapter 7

Floating Numbers

We discussed the representation of integers in previous chapters, and the representation of floating-point
numbers is more complex.

However, we can break a floating-point number into parts. For example, consider

6.6254︸ ︷︷ ︸
Mantissa (always positive)

× 10︸︷︷︸
Base

Exponent︷︸︸︷
−27

We have:

1. Mantissa: A normalized number with a certain level of accuracy (e.g., 6.6254).

2. Exponent: A scale factor that determines the position of the decimal point (e.g., 10−27).

3. Sign bit: Indicates whether the number is positive or negative.

We normalize the mantissa to fall within the range [1, R), where R is the base. For instance, in the case
of a binary base, this range would be [1, 2).

In IEEE Standard 753 Single Precision, we have

S E′ M

Here, S represents the sign bit, where 0 indicates a positive number and 1 indicates a negative number.
E′ is the 8-bit signed exponent, represented in excess-127 notation, ranging from −127 to 128. M is the
23-bit mantissa fraction. The value is thus represented as ±1.M × 2E

′−127.

Remark. Minimum exponent = 1− 127 = −126; Maximum exponent = 254− 127 = 127

For double precision, we use 64 bits. E′ is the 11-bit signed exponent, represented in excess-1023 notation,
and M is the 52-bit mantissa fraction.

Example. What is the IEEE single precision number 40C000016 in decimal?

Solution: First, convert the hexadecimal number 40C000016 to binary:

40C000016 = 0100 0000 1100 0000 0000 0000 0000 00002

Sign bit (0): Positive (+)

Exponent: 100000012 − 127 = 129− 127 = 2

Mantissa: 1.100 0000 0000 0000 0000 00002 = 1 + 1× 2−1 = 1.5

Therefore, the result is:
1.5× 22 = 610

23

Example. What is −0.510 in IEEE single precision binary floating-point format?

Solution: Sign bit: 1 (since the number is negative)

Mantissa: 1− 0.5 = 0.5 = 1× 2−1

Exponent: 127− 1 = 126 = 01111110

Thus, in binary:

−0.510 = 1011 1111 0000 0000 0000 0000 0000 00002

Remark. Exponents with all 0’s or all 1’s have special meanings in IEEE floating-point representa-
tion:

- E = 0,M = 0: Represents 0.

- E = 0,M ̸= 0: Represents a denormalized number, which is ±0.M × 2−126.

- E = 1 . . . 1, M = 0: Represents ±∞, depending on the sign.

- E = 1 . . . 1, M ̸= 0: Represents NaN (Not a Number).

CHAPTER 7. FLOATING NUMBERS 24

Chapter 8

Datapath

Now we can take a closer look at the implementation of RISC-V.

8.1 Overview

In the implementation, we use the program counter (PC). After supplying the instruction address and
fetching the instruction from memory, we update the PC. Then, we decode the instruction and execute
it.

There are two types of functional units (logic elements). The first type is combinational (combinational
elements), which operate on data values. The output of these functional units depends only on the
current input, meaning there is no internal storage. The second type includes elements that contain
state, called state elements. These elements have internal storage, which characterizes a computer. For
example, instruction memory, register files, and data memory are sequential (state elements), while the
ALU is combinational.

Remark. In instruction memory, instructions are placed one by one. In register files, there are 32
lines, and we only need 5 bits in the instruction to indicate the register file address.

To fetch instructions, the processor first reads the instructions from the instruction memory, then updates
the PC to the address of the next instruction. The PC is updated every clock cycle (typically PC = PC+4
by default), and the instruction memory is read every clock cycle.

Note that the clock is edge-triggered, so the PC is updated only on the rising or falling edge of the clock.

After the instructions are read, the processor decodes them. The fetched instruction’s opcode and
function field bits are sent to the control unit, which then generates control signals used in the future
datapath. Next, two values are read from the Register File, with the register addresses contained in the
instruction.

Regardless of whether the values are actually used, the Register File’s read ports are active for all
instructions during the decode cycle. In case the instruction requires values from the Register File, it
reads the two source operands by default.

All instructions, except j, use the ALU after reading from the register. For memory-reference instruc-
tions, the ALU is used to compute addresses; for arithmetic instructions, the ALU performs the required
arithmetic; for control instructions, the ALU computes branch conditions.

25

8.2 Operations

8.2.1 R Format Operations
31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcodeR-Type

R-type instructions perform operations on values in rs1 and rs2, then store the result back into the
Register File. Note that the Register File is not written every cycle, so a write control signal is needed
for the Register File.

8.2.2 I and S Format Operations
31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcodeI-Type

31 25 24 20 19 15 14 12 11 7 6 0

imm[11:5] rs2 rs1 funct3 imm[4:0] opcodeS-Type

For load and store operations, the memory address is computed by adding the base register to the 12-bit
signed offset field in the instruction (imm[] + rs1). The base register is read from the Register File
during decode, and the offset value in the lower 12 bits of the instruction must be sign-extended to
create a 32-bit signed value.

For store instructions, the value is read from the Register File during decode and written into the Data
Memory. For load instructions, the value is read from the Data Memory and then stored into the Register
File.

Also, note that the lw and sw instructions access data memory, not instruction memory.

As shown above, after decoding, the sign is extended in the lower part. Above is the clock for the PC
value, which executes the branch instruction. In the rightmost mux, it selects the source. It is activated
only for lw instructions. Additionally, only for sw, the MemWrite signal will be 1 (High), which activates
the write data port.

CHAPTER 8. DATAPATH 26

8.2.3 B Format Operations
31 30 25 24 20 19 15 14 12 11 8 7 6 0

imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcodeB-Type

For branch operations, it compares the operands read from the Register File during decode for equality.
The 12-bit B-immediate encodes signed offsets in multiples of one byte. It is sign-extended and added
to the address of the branch instruction to give the target address.

8.2.4 J Format Operations
31 30 21 20 19 12 11 7 6 0

imm[20|10:1|11|19:12] rd opcodeJ-Type

The J-immediate encodes a signed offset in multiples of 2 bytes. The offset is sign-extended and added
to the address of the jump instruction to form the jump target address. Since imm[0] is always 0, we
don’t have it in the instruction.

The partition of imm field is designed to align the imm bits better with other instruction types, enabling
a more efficient implementation of control units.

8.3 Datapath

By assemble the above datapathn elements, add control lines and desgin the control path, we can create
a signle datapath.

We need to fetch, decode, and execute each instruction in one clock cycle, which is called the single-cycle
design. No datapath resource can be used more than once per instruction, so some components must be
duplicated. Additionally, multiplexers are needed at the input of the shared elements with control lines
to perform the selection, allowing datapath elements to be shared between two different instructions.

CHAPTER 8. DATAPATH 27

Here, the MUX before the ALU determines the second ALU operand, and the MUX after the Data
Memory decides whether to feed memory data to the register file. The system clock is edge-triggered
and is determined by the length of the longest path. The ALU is used to compute the branch instruction,
and its output can replace the PC when needed.

Memory and Register File reads are combinational. By using write signals along with the clock edge, we
determine when to write to the sequential elements, such as the PC or Register File.

By adding the control as shown above, we can select the operations to perform, control the flow of data,
and direct the information that comes from the 32-bit instruction.

Remark. The instruction is decoded in the path between the Instruction Memory and Register File.

For different operations, the control signals vary.

add lw sw beq

MUX after Reg 0 1 1 0
MUX after DataMem 0 1 / /

MUX after Add 0 0 0 /
RegWrite 1 1 0 0
MemWrite 0 0 1 0
MemRead 0 1 0 0

When the MUX after Add = 0, the PC is updated as PC+ = 4. Both ALU inputs are from the Register
File.

CHAPTER 8. DATAPATH 28

Chapter 9

Pipeline

9.1 Motivations

As discussed before, an instruction finishes within a single clock cycle. However, this can be inefficient
since the clock cycle must be timed to accommodate the slowest instruction, meaning every instruction
takes the same amount of time. This results in wasted area, as some functional units (e.g., adders)
must be duplicated since they cannot be shared within a single clock cycle. Additionally, for simple
instructions, the latter part of the clock cycle might be wasted.

Example. Calculate the cycle time assuming negligible delays (for muxes, control unit, sign exten-
sion, PC access, shift left by 2, wires) except for:

- Instruction fetch and update PC (IF), read/write data from/to data memory (MEM) (4 ns)

- Execute R-type; calculate memory address (EXE) (2 ns)

- Register fetch and instruction decode (ID), write the result data into the register file (WB) (1 ns)

Solution:

Instruction IF ID EXE MEM WB Total

R / I type 4 1 2 1 8
lw 4 1 2 4 1 12
sw 4 1 2 4 11
beq 4 1 2 7

jal 4 1 2 1 8
jalr 4 1 2 1 9

Therefore, we try to make it faster by fetching and executing the next instructions while the current
instruction is running, and we introduce the concept of pipelining here. Under ideal conditions, with
a large number of instructions, the speedup from pipelining is approximately equal to the number of
pipeline stages. For example, a five-stage pipeline is nearly five times faster because the clock cycle is
"nearly" five times faster.

Also, we have
CPU time = CPI × CC × IC,

where CPI = cycles per instruction, CC = clock cycle time, and IC = instruction count.

By pipelining, it reduces the time spent on each clock cycle and decreases the CPU time.

9.2 Pipeline Basis

Instructions are divided into five stages:

29

- IF: Instruction fetch and PC update

- ID: Instruction decode and register file read

- EXE: Execution or address calculation

- MEM: Data memory access

- WB: Write the result data back into the register file

By dividing the stages, we can increase the total amount of work done in a given time. However,
instruction latency, which is the time from the start of an instruction to its completion, is not reduced.

Similarly, the clock cycle is limited by the slowest stage, so some stages do not need the whole clock
cycle.

This might lead to the situation where, for example, if we have IF = 100ps, ID = 100ps, EXE = 200ps,
MEM = 200ps, and WB = 100ps, the latency of an instruction takes 1000ps in a pipelined case, while
it takes 700ps in a non-pipelined case. However, for more instructions, the overall speed is faster in the
pipelined case than in the non-pipelined case.

In RISC-V, the implementation of the pipeline is relatively simple for the following reasons:

1. All instructions have the same length.

2. There are few instruction formats with symmetry across formats.

3. Memory operations occur only in loads and stores.

4. Each instruction writes at most one result, and it does so in the last few pipeline stages.

5. Operands must be aligned in memory, so a single data transfer takes only one data memory access,
which is accomplished in RISC-V fields.

State registers are placed between each pipeline stage to isolate them. Each register is a flip-flop, and
data moves in at the rising edge. After the pipeline is fully utilized, we can complete one instruction per
cycle.

To simplify, we use graphics to represent the RISC-V pipeline.

Other pipeline structures are also possible.

We use pipelines because they are better for performance. Once the pipeline is full, one instruction is
completed per cycle, so the CPI (cycles per instruction) is 1.

CHAPTER 9. PIPELINE 30

However, pipelines can cause issues, as they may introduce hazards. There are three possible pipeline
hazards: structural hazards, caused by a busy resource; data hazards, where data is attempted to be
used before it is ready; and control hazards, where control actions depend on the outcome of a previous
instruction.

We typically resolve these hazards by allowing pipeline control to detect the hazards and take action to
resolve them.

9.3 Structural Hazards

Structural hazards are caused by conflicts in the use of a resource. In a RISC-V pipeline with a single
memory, it needs to access both data and instructions to load or store data and fetch new instructions.
Therefore, the pipeline datapaths require separate instruction and data memories to avoid such conflicts.

To resolve a structural hazard, we can provide additional hardware components.

As mentioned above, by separating instruction and data memories, we can resolve the structural hazard.
For example, in the diagram above, while the first lw is reading data from memory, the second lw is
reading instructions from memory. Since the memories are separated, the issue is resolved.

In the diagram above, sub and the second add instructions are accessing the same register file, which
could lead to a structural hazard. This can be fixed by performing reads in the second half of the cycle
and writes in the first half. We use the clock edge to control the register writing and loading.

9.4 Clocking Methodology

Clocking methodology defines when signals can be read and when they can be written. The clock rate
is given by:

Clock rate =
1

Clock cycle time

This can be implemented using level-sensitive latches, master-slave flip-flops, or edge-triggered flip-flops.

The change of state is based on the clock. For latches, the output changes whenever the inputs change
and the clock is asserted (level-sensitive methodology). For flip-flops, the output changes only on a clock
edge (edge-triggered methodology).

CHAPTER 9. PIPELINE 31

Chapter 10

More on Pipeline

32

Chapter 11

Performance

33

Chapter 12

Memory

34

Chapter 13

Cache

35

Chapter 14

Cache Disc

36

Chapter 15

Virtual Machine

37

Chapter 16

Instruction-Level Parallelism

38

	Introduction
	The Manufacturing Process of Integrated Circuit
	Power

	Instruction Set Architecture (ISA)
	Organization
	Instruction Set Architecture
	RISC-V

	Arithmetic Instructions
	Introduction to RISC-V
	Arithmetic and Logical Instructions
	Data Transfer Instruction

	Control Instruction
	Introduction to Register
	Control Instructions
	Accessing Procedures

	Logic basis
	Numeral System
	Logic Gates

	Arithmetic and Logic Unit
	Overview
	Addition Unit
	Multiplication and Division
	Shifter

	Floating Numbers
	Datapath
	Overview
	Operations
	Datapath

	Pipeline
	Motivations
	Pipeline Basis
	Structural Hazards
	Clocking Methodology

	More on Pipeline
	Performance
	Memory
	Cache
	Cache Disc
	Virtual Machine
	Instruction-Level Parallelism

